Show simple item record

dc.contributor.advisorHilario Falcon, Franciscoes_PE
dc.contributor.authorSanchez Atuncar, Giancarloes_PE
dc.date.accessioned2023-03-31T20:10:16Z
dc.date.available2023-03-31T20:10:16Z
dc.date.issued2022
dc.identifier.urihttps://hdl.handle.net/20.500.13084/6639
dc.description.abstractEl propósito de la investigación es desarrollar un modelo mediante técnicas de inteligencia artificial para medir la radiación UV-B en el Distrito de La Molina, cuyo tipo de investigación es aplicada y diseño experimental de tipo pre-experimental con enfoque cuantitativo. La metodología utilizada para el desarrollo fue la metodología KDD (Knowledge Discovery in Database) la cual consta de las siguientes etapas: Selección de datos, procesamiento de datos, transformación de datos, minería de datos e interpretación. Para el estudio se utilizaron 43425 mil datos meteorológicos del SENAMHI entre 2016 y 2021, de los cuales el 80% y 20% de los datos se utilizaron para entrenamiento y validación de los respectivos modelos. Los resultados obtenidos muestran que de los seis algoritmos utilizados, entre los que se encuentra el árbol de decisión, Vecinos Cercanos, Regresión logística, Redes Bayesianas, Redes Neuronales y SVM, se pudo determinar que con respecto al Árbol de Decisión: precisión = 100%, sensibilidad = 100 %, especificidad = 100 %, recuperación = 100 % y puntuación F1 = 1,98; KNN: precisión = 99,24 %, sensibilidad = 98,12 %, especificidad = 99,52 %, Recall = 98 % y puntaje F1 = 1,94; Regresión logística: precisión = 99,77 %, sensibilidad = 99,44 %, especificidad = 99,86 %, recuperación = 99 % y puntaje F1 = 1,96; Redes bayesianas: precisión = 80,44 %, sensibilidad = 62,36 %, especificidad = 86,80 %, recuperación = 62 % y puntuación F1 = 0,6; Redes neuronales: precisión = 90,24 %, sensibilidad = 98,09 %, especificidad = 99,52 %, recuperación = 98 % y puntaje F1 = 1,94; SVM: precisión = 99,39 %, sensibilidad = 98,16 %, especificidad = 24,92 %, Recall = 98 % y puntuación F1 = 1,94. Concluyendo que el árbol de decisión permite predecir con alta precisión, sensibilidad, especificidad, Recall y puntuación F1 de la radiación UV-B.es_PE
dc.formatapplication/pdfes_PE
dc.language.isospaes_PE
dc.publisherUniversidad Nacional Federico Villarreales_PE
dc.rightsinfo:eu-repo/semantics/openAccesses_PE
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/es_PE
dc.sourceUniversidad Nacional Federico Villarreales_PE
dc.sourceRepositorio Institucional - UNFVes_PE
dc.subjectSistemas inteligentes, robótica, domóticaes_PE
dc.subjectAlgoritmoses_PE
dc.subjectRadiación solares_PE
dc.subjectÁrbol de decisioneses_PE
dc.titleDesarrollo de un modelo para la medición de radiación UV-B utilizando técnicas de inteligencia artificiales_PE
dc.typeinfo:eu-repo/semantics/doctoralThesises_PE
thesis.degree.nameDoctor en Ingeniería de Sistemases_PE
thesis.degree.disciplineIngeniería de Sistemases_PE
thesis.degree.grantorUniversidad Nacional Federico Villarreal. Escuela Universitaria de Posgradoes_PE
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#1.02.00es_PE
renati.author.dni41488834es_PE
renati.advisor.orcidhttps://orcid.org/0000-0003-3153-9343es_PE
renati.typehttp://purl.org/pe-repo/renati/type#tesises_PE
renati.discipline612018es_PE
renati.levelhttp://purl.org/pe-repo/renati/level#doctores_PE
renati.jurorManrique Suarez, Luis Humbertoes_PE
renati.jurorFlores Vidal, Higinio Exequieles_PE
renati.jurorVales Carrillo, Jorge Albertoes_PE
dc.type.versioninfo:eu-repo/semantics/publishedVersiones_PE
dc.publisher.countryPEes_PE


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess