Machine learning no supervisado en la detección de similitud de puestos de empleo de profesionales de TI
Abstract
Machine Learning no supervisado es una rama de la inteligencia artificial que utiliza técnicas automatizadas para resolver problemas basados en el descubrimiento de patrones o conglomerados de objetos según su posición geométrica en el espacio vectorial n dimensional, la calidad del agrupamiento depende de la complejidad, dimensionalidad y granularidad del dataset, de las estadísticas y de la distribución de los datos; Clustering es una técnica que recae en este rubro. Por otro lado, Las cualificaciones y perfiles ocupacionales estandarizados y actualizados es uno de los objetivos de las naciones, enfocados en mejorar la calidad y pertinencia de la educación y la formación para el trabajo; globalmente se cuenta con las cualificaciones ocupacionales ISCO-08 de la OIT y a nivel nacional con el CNPO y MNCP. En ese contexto, el presente trabajo realiza una investigación a partir de los puestos de empleo de profesionales de TI suministrados en los portales web por empleadores o grupos de interés, extrae las cualificaciones y su detalle, diseña un modelo dimensional, determina un modelo basado en clusters de puestos de empleo, aplica métricas y una técnica supervisada para evaluar la precisión del modelo, desarrolla un prototipo de aplicación y concluye fundamentando los beneficios que obtendría la academia disponiendo de una demanda social real y las entidades responsables de mantener actualizado el CNPO y MNCP con su implementación, extendiéndolo a otras disciplinas.