

FACULTAD DE INGENIERÍA GEOGRÁFICA, AMBIENTAL Y ECOTURISMO

DESARROLLO DE UN PLAN DE MONITOREO DE CALIDAD DE AGUA EN EL PROYECTO DE EXPLORACIÓN MINERA

Línea de investigación:

Biodiversidad, ecología y conservación

Informe de suficiencia profesional para optar título profesional de

Ingeniero Geógrafo

Autora:

Sánchez Calonge, Ethel Lucía

Asesor:

Arguedas Madrid, Cesar Jorge

(ORCID: 0000-0003-2583-6843)

Jurado:

Alva Velásquez, Miguel Zamora Talaverano, Noe Sabino

Cesar Minga, Julio

Lima - Perú

2021

Referencia:

Sánchez, E. (2021). *Desarrollo de un plan de monitoreo de calidad de agua en el proyecto de exploración minera* [Trabajo de suficiencia profesional, Universidad Nacional Federico Villarreal]. Repositorio Institucional UNFV. <u>http://repositorio.unfv.edu.pe/handle/UNFV/5664</u>

Reconocimiento - No comercial - Sin obra derivada (CC BY-NC-ND)

El autor sólo permite que se pueda descargar esta obra y compartirla con otras personas, siempre que se reconozca su autoría, pero no se puede generar obras derivadas ni se puede utilizar comercialmente.

http://creativecommons.org/licenses/by-nc-nd/4.0/

FACULTAD DE INGENIERÍA GEOGRÁFICA, AMBIENTAL Y ECOTURISMO DESARROLLO DE UN PLAN DE MONITOREO DE CALIDAD DE AGUA EN EL PROYECTO DE EXPLORACIÓN MINERA

Línea de investigación: Biodiversidad, Ecología y Conservación

Informe de suficiencia profesional para optar título profesional de Ingeniero Geógrafo

Autor:

Sánchez Calonge, Ethel Lucía

Asesor:

Arguedas Madrid, Cesar Jorge

Jurado:

Alva Velásquez, Miguel

Zamora Talaverano, Noe Sabino

Cesar Minga, Julio

Lima - Perú

2021

Res	umen	V
Abs	stract	VI
Ι	Introducción	1
	1.1 Trayectoria del autor	2
	1.2 Descripción de la empresa	11
	1.3 Organigrama de la empresa	22
	1.4 Áreas y funciones desempeñadas	24
II	Descripción de una actividad específica	28
	2.1 Alcances	28
	2.2 Descripción del plan de monitoreo de calidad de agua del proyecto El Galeno	33
	2.3 Análisis de la legislación ambiental	82
III	Aportes más destacables a la empresa MWH Perú	96
IV	Conclusiones	97
V	Recomendaciones	99
VI	Referencias	100
VII	Anexos	102

Índice

Índice de tablas

Tabla 1 Detalles de capacitación continua - diplomados	4
Tabla 2 Capacitación continua – cursos varios	4
Tabla 3 Capacitación continua - cursos de especialización	5
Tabla 4 Proyectos internacionales de MWH	
Tabla 5 Proyectos de MWH realizados en Perú	
Tabla 6 Listado de oficinas de MWH	
Tabla 7 Detalle de la ubicación de caseríos del proyecto El Galeno	
Tabla 8 Distancias al proyecto El Galeno	
Tabla 9 Estaciones de monitoreo de calidad de agua - programa mensual	
Tabla 10 Estaciones de medición de parámetros de campo - programa mensual	
Tabla 11 Estaciones de monitoreo de calidad de agua - programa trimestral	40
Tabla 12 Estaciones de medición de parámetros de campo - programa trimestral	46
Tabla 13 Parámetros para analizar	
Tabla 14 Parámetros requeridos por tipo de cuerpos de agua	54
Tabla 15 Características de materiales, instrumentos y equipos utilizados	62
Tabla 16 Detalle de la precisión de equipos utilizados	64
Tabla 17 Método de muestreo empleado en cuerpos de agua	
Tabla 18 Métodos de análisis y límites de detección	76
Tabla 19 Componentes del plan de monitoreo	
Tabla 20 Comparativo de la legislación ambiental – recurso agua	
Tabla 21 Comparando protocolos de monitoreos de recursos hídricos	
Tabla 22 Contenido del protocolo ANA y plan de monitoreo para LUMINA	
Tabla 23 Comparando clasificación de cuerpos de agua de la normativa de los años 2	2010 y
2018	92

Tabla	24 Resumen	de las regu	laciones de	la calidad	de agua v	efluentes	ç	13
1 ania		ue las regu	luciones uc	ia callada	uc ugua y	cirucines .	······	\mathcal{I}

Índice de figuras

Figura 1 Línea de tiempo de MWH	
Figura 2 Oficinas internacionales de MWH	14
Figura 3 Servicios de MWH	19
Figura 4 Organigrama de la oficina regional de América Latina y El Caribe	
Figura 5 Distribución de empleados en MWH	
Figura 6 Ubicación del proyecto El Galeno	
Figura 7 Estado actual del proyecto El Galeno	
Figura 8 Estaciones de monitoreo de calidad de agua - programa mensual	
Figura 9 Estaciones de monitoreo de calidad de agua - programa trimestral	
Figura 10 Calibración de equipos de monitoreo	
Figura 11 Equipos empleados en el trabajo de campo	
Figura 12 Calibrando multiparámetro YSI	61
Figura 13 Muestreo por el método directo	67

Resumen

El presente informe, tiene como finalidad dar a conocer la trayectoria del autor en el que incluye grado académico, estudios de postgrados, cualificación profesional, área de experiencia, experiencia preprofesional y experiencia profesional. Luego la descripción se enmarca en una empresa mostrando su organización, valores, misión y responsabilidad social, ambiental, seguridad y salud en el trabajo, así como; los servicios, clientes y proyectos destacados. Empresa en el que autor laboró por más de cinco años, iniciando como monitorista ambiental hasta ocupar el puesto de especialista ambiental en el área de asuntos socioambientales. Como especialista ambiental elaboró el plan de monitoreo de calidad de agua del proyecto El Galeno, proyecto minero administrado por LUMINA COPPER SAC. (LUMINA). El plan de monitoreo de calidad de agua se estructuró en basado de la normativa nacional e internacional, planteó objetivos, definió estaciones y parámetros a analizar. Así mismo, se detalla el procedimiento de monitoreo, el manejo de muestras y documentación, metodología analítica, manejo y validación de datos y control de calidad. Teniendo en cuenta que el plan de monitoreo fue elaborado en el 2010 se realizó una comparación con la normativa actual aprobada por la Autoridad Nacional del Agua (ANA), el resultado de la comparación forma parte de las conclusiones y recomendaciones. El informe también muestra los aportes destacados del autor como resultado de su trabajo como especialista ambiental y responsable de los monitoreos de calidad de agua en diferentes proyectos. Cabe destacar que el plan de monitoreo es un documento previo a la salida de campo que precisa trabajos propios para la empresa LUMINA y que en la actualidad se puede utilizar por contemplar criterios de la normativa vigente.

Palabras clave: calidad de agua, plan de monitoreo, estándares de calidad ambiental.

Abstract

The purpose of this report is to publicize the author's career, which includes an academic degree, postgraduate studies, professional qualification, area of experience, preprofessional experience and professional experience. Then the description is framed in a company showing its organization, values, mission and social and environmental responsibility, safety and health at work, as well as; outstanding services, clients and projects. Company in which the author worked for more than five years, starting as an environmental monitor until occupying the position of environmental specialist in the area of socio-environmental affairs. As an environmental specialist, he prepared the water quality monitoring plan for the El Galeno project, a mining project managed by LUMINA COPPER SAC (LUMINA). The water quality monitoring plan was structured based on national and international regulations, set objectives, defined stations and parameters to be analyzed. Likewise, the monitoring procedure, handling of samples and documentation, analytical methodology, handling and validation of data and quality control are detailed. Taking into account that the monitoring plan was prepared in 2010, a comparison was made with the current regulations approved by the National Water Authority Perú (ANA in Spanish), the result of the comparison is part of the conclusions and recommendations. The report also shows the author's outstanding contributions as a result of his work as an environmental specialist and responsible for water quality monitoring in different projects. This is important to highlight that the monitoring plan is a document prior to the field trip that requires its own work for the LUMINA company and that at present it can be used because it contemplates some criteria of the current regulations.

Keywords: water quality, monitoring plan, environmental quality standard (ECA in Spanish).

I Introducción

En cumplimiento al procedimiento para la obtención del título profesional por la modalidad de suficiencia profesional se desarrolla el presente informe basada en la estructura del anexo IV del reglamento general de grados y títulos de la Universidad Nacional Federico Villarreal. Reglamento que fue aprobado mediante Resolución R.N. N° 2900-2018-CU-UNFV el 25 de junio del 2018, el cual se enmarca en la Ley Universitaria N° 30220.

El presente informe contiene la experiencia del autor como especialista ambiental en el área de asuntos socioambientales de la empresa MWH Perú SA (MWH). El autor, como especialista ambiental participó en varios proyectos, siendo el principal el proyecto El Galeno, ubicado en los distritos de La Encañada y Sorochuco, provincias de Cajamarca y Celendín, respectivamente, en el departamento de Cajamarca; administrado por LUMINA.

Ante la creciente actividad del proyecto El Galeno y consciente de que puede afectar la calidad de los recursos hídricos circundantes, LUMINA solicitó la actualización del plan de monitoreo de calidad de agua (plan de monitoreo), considerando las estaciones del plan de manejo ambiental (PMA) aprobado en la segunda modificación del EIAsd del proyecto de exploración El Galeno 2009, mejoramiento del campamento y perforaciones adicionales; aprobado mediante la R. D. Nº 054- 2010-MEM/AMM.

La planificación del monitoreo se realizó en gabinete en el que se incluyó criterios como: cuenca, unidad hidrográfica, recurso hídrico, puntos de monitoreo, lugares de acceso, verificación y ubicación de la zona de muestreo y los puntos de monitoreo mediante el empleo de herramientas informáticas (Google Earth), parámetros a evaluar en cada punto de monitoreo, los equipos, materiales reactivos, formatos de campo, logística a utilizar para el traslado del equipo de trabajo y para el análisis de muestra (ANA, 2016, p. 8).

1.1 Trayectoria del autor

Ethel Lucía Sánchez Calonge, en adelante el autor, es bachiller en ingeniería geográfica de la Universidad Nacional Federico Villarreal, donde además estudió la segunda especialidad en ordenamiento territorial y ambiental, y egresó de la maestría en ingeniería ambiental de la escuela universitaria de postgrado. Cuenta con más de 17 años de experiencia en instituciones privadas y públicas, combinando sus conocimientos en ingeniería geográfica con el sistema de información geográfica (SIG).

La experiencia del autor en asuntos ambientales, en operaciones y proyectos de exploración minera, le brindó una sólida base para participar en el desarrollo de instrumentos de gestión ambiental (preventivos y correctivos) de proyectos mineros nacionales e internacionales. También, le permitió prestar servicios de asesoría técnica al tribunal de fiscalización ambiental, del Organismo de Evaluación y Fiscalización Ambiental (OEFA).

Así mismo, cuenta con experiencia en el desarrollo de proyectos aplicados con el sistema de información geográfica y base de datos; en temáticas como medio ambiente, recursos naturales, detección del cambio de cobertura vegetal, evaluación de riesgo y circunscripción territorial.

A continuación, se muestra una breve descripción sobre el grado académico, estudios de postgrado y cualificación profesional del autor.

1.1.1 Grado académico

El 25 de junio de 1999 el consejo de la facultad de ingeniería geográfica y ambiental otorgó al autor el grado de bachiller en ingeniería geográfica, grado conferido por el consejo universitario el 13 de setiembre del mismo año. El diploma se encuentra en el libro 74, folio 215 y en el registro 54795; de la oficina de grados y títulos de la secretaría general de la Universidad Nacional Federico Villarreal.

Al año siguiente, en el 2000, mediante la Resolución de Facultad N°036-2000-FIGA-UNFV se declaró al autor expedito para obtener el título profesional de ingeniero geógrafo.

La constancia del grado académico y la resolución de expedito se muestran en el Anexos A.

1.1.2 Estudios de postgrado

En el año 2003 el autor llevó el primer curso de segunda especialización profesional en ordenamiento territorial y medio ambiente (COTMA, 2003), en la facultad de ingeniería geográfica y ambiental (FIGA). El autor aprobó satisfactoriamente el plan de estudios por lo que se le otorgó el certificado de egresado. El certificado se adjunta en el Anexos B.

En el año 2010 el autor ingresó al programa de la maestría en ingeniería geográfica de la escuela universitaria de postgrado de la Universidad Nacional Federico Villarreal. El autor aprobó el total de las asignaturas. Ver la constancia en el Anexos B.

1.1.3 Cualificación profesional

El autor cuenta con una cualificación profesional desde el 2000, sin embargo; para el presente informe se considera desde el año 2010 que suman un total de 1 292 horas lectivas. A continuación, se muestra el detalle de cada capacitación que llevó el autor desde el año 2010 hasta la actualidad y las constancias en el adjuntan en el Anexos C.

El autor llevó dos diplomados referente a la gestión ambiental. El primero con un enfoque a los impactos ambientales y el segundo enfocado la defensa de los recursos naturales. Ambos diplomados hacen un total de 904 horas lectivas (ver Tabla 1)

Tabla 1

Detalles de capacitación continua - diplomados

Año	Titulo	Organizado	Horas lectivas
2016	Gestión ambiental y defensa de los	Centro de altos estudios	384
	recursos naturales	nacionales	
2000	Gestión ambiental y evaluación de	Centro de estudios	52.0
2009	impacto ambiental	superiores y actualización	520
	904		

El autor, desde el 2012 hasta la fecha llevó siete cursos que hacen un total de 218 horas lectivas, los cuales les permitieron estar actualizada en los procesos y normativas ambientales (ver Tabla 2)

Tabla 2

Capacitación continua – cursos varios

Año	Titulo	Organizado	Horas
			lectivas
2020	Gestión ambiental en proyectos del	Ozone Group S.A.C	4
	sector transportes		
2020	Curso-Taller: Matriz IPERC -	Grupo Educativo	18
	identificación de peligros y	Capacitate Perú SAC	
	evaluación de riesgos controlados		
2018	Certificación ambiental en el sector	Global Yaku Consultores	40
	transporte	SAC	
2018	Hidrología para estudios	Global Yaku Consultores	20
	ambientales	SAC	
2016	Taller macro regional amazónico -	Dirección General de	16
	Norte sobre levantamiento de	Asuntos Ambientales	
	suelos y clasificación de tierras por	Agrarios	
	su capacidad de uso mayor		
2016	Módulo I alerta temprana de	Programa nacional de	12
	deforestación, mediante el uso de la	conservación de bosques	
	plataforma GEOBOSQUES	para la mitigación de	

Año	Titulo	Organizado	Horas
			lectivas
		cambio climático-	
		PNCBMCC -MINAM	
2015	Programa de gestión de los recursos	GERENS	80
	de agua en minería y energía		
2015	Fiscalización de medio ambiente	LAM GROUP	8
	(OEFA)		
2012	Supervisión ambiental directa:	Centro de investigación y	20
	recurso agua	tecnología ambiental -	
		UNALM	
	Totales de horas lecti	vas	218

En los últimos diez años, el autor llevó cinco cursos de especialización los cuales hacen

un total de 210 horas lectivas (ver Tabla 3)

Tabla 3

Capacitación continua - cursos de especialización

Año	Titulo	Organizado	Horas
			lectivas
2020	Cierre de minas y gestión de residuos mineros	Cisneros Organization SAC	48
2017	Gestión integrada de recursos	Autoridad Nacional del	102
	hídricos: módulos 1,2 y 3	Agua	
2014	Sistema de gestión ambiental -	Centro de tecnologías	20
	EMASeasy como soporte de la ecoeficiencia	tmbientales - SENATI	
2010	Gestión de datos y modelado de calidad de agua	Schlumberger groundwater & environmental training	20
2010	Calidad de aguas subterráneas y proyectos de remediación	courses INTERCADE consultancy & training	20
	Totales de horas lec	tivas	210

1.1.4 Áreas de experiencia

El autor, con toda la experiencia adquirida puede desempeñarse en cualquiera de las siguientes áreas:

- auditorías ambientales,
- monitoreo ambiental,
- dirección de estudios de línea base,
- sistema de información geográfica (SIG),
- saneamiento de áreas de conservación, y
- ordenamiento del territorial.

1.1.5 Experiencia preprofesional

El autor en el quinto año (1998) de estudios de la carrera (ingeniería geográfica) inició sus prácticas preprofesionales en el Servicio Nacional de Meteorología, Hidrología y del Medio Ambiente (SENAMHI). Primero estuvo en el área meteorología, donde realizó trabajos de digitalización y verificación de la base de datos de precipitación de las estaciones costeras para obtener valores normales; en el marco de monitoreo del fenómeno de "El Niño". Luego pasó al área de informática, donde participó en el análisis de la información hidrológica de la dirección regional Arequipa y elaboró el plan piloto del sistema de información geográfica.

Las prácticas continuaron, en el año 2000 el autor realizó trabajos de control de calidad de la información meteorológica e hidrológica y continuó implementando el proyecto piloto del laboratorio SIG. En el mismo año, el autor participó en el estudio hidrológico – meteorológico en la vertiente del pacífico del Perú con fines de evaluación y pronóstico del fenómeno El Niño para prevención y mitigación de desastres, como revisor de los mapas y procesamientos de datos en el modelamiento hidrológico.

Las constancias de las prácticas preprofesionales se adjuntan en el Anexos D.

1.1.6 Experiencia profesional

La experiencia profesional del autor inició en el 2000, fecha en que viene combinando sus conocimientos en ingeniería geográfica con los aspectos ambientales y el sistema de información geográfica.

En los proyectos con el SIG usó como plataforma de trabajo el programa ArcView, el cual con el tiempo fue reemplazado por el ArcGIS para el despliegue de coberturas y manejo de base de datos. También manejó el sistema de posicionamiento global (GPS) como herramienta de recojo de información en campo.

A continuación, se detalla brevemente la experiencia profesional del autor:

- En el año 2000 trabajó en la unidad de información de estadística y cartografía del Consejo Nacional Camélidos Sudamericanos (CONACS). Fue responsable del mapeo y georreferenciación de la población de camélidos y el estado de su hábitat.
- Del año 2002 al 2004 trabajó en el proyecto "Fortalecimiento de la Vigilancia de Malaria y Dengue" para las Direcciones Regional de Salud (DIRESA) de Ucayali, Loreto y Yurimaguas. Fue responsable de levantar la cartografía de las ciudades principales, georreferenciar los casos de malaria, dengue y dengue hemorrágico y elaborar el mapa de distribución de casos de malaria y dengue 2002 -2003.
- En el año 2004 trabajó en el área de monitoreo y evaluación de Chemonics Internacional INC. Recopiló información en campo y elaboró la base de datos del programa de cultivo alternativo para los distritos de El Pongo de Caynarachi, Chazuta, Shunté, Nuevo Progreso, Uchiza, Tocache y Polvora; departamento de San Martín. El mismo año ingresó como jefe al departamento de medio ambiente de la Unidad Económica Administrativa "Solitaria" (Laraos, Yauyos-Lima) de la Cía. Minera San Valentín S.A. Fue responsable del levantamiento de observaciones de las fiscalizaciones del Ministerio de Energía y Minas (MEM) y Dirección General de Salud

(DIGESA), así como; la planificación y ejecución de programas para controlar y mitigar las fuentes contaminantes, entre ellas estuvo el trabajo de limpieza; reubicación de materiales a recuperar; modificación del sistema de recojo de desechos e implementación de programas de monitoreo. También, mejoró las áreas verdes canalizando las aguas de escorrentía.

- En el año 2006 prestó servicios en la unidad de estadística educativa del Ministerio de Educación (MINEDU). Se actualizó la carta educativa de las Unidades de Gestión Educativa Local (UGEL) de San Martin, Alto Amazonas Yurimaguas, Alto Amazonas San Lorenzo, Rioja y Moyobamba.
- Del año 2005 al 2012 trabajó en la consultora MWH. Los dos (02) primeros años trabajó como monitorista de calidad de agua, siendo el cliente la empresa LUMINA.

A partir del 2007 pasó a formar parte del staff profesional hasta el 2012. Durante los casi cinco (05) años fue integrante del equipo técnico multidisciplinario encargado de la elaboración de los instrumentos de gestión ambiental. Responsable de la actualización de planes y programas de monitoreo ambiental. Líder de monitoreo participativo de calidad de agua superficial y el desarrollo del informe de resultados. También, fue coordinadora del desarrollo de Inexistencia de Restos Arqueológicos (CIRA), y de estudio hidrológico para la autorización de vertimiento de aguas residuales tratadas en unidad minera. Cabe indicar que las actividades mencionadas fueron para los clientes del sector minería como Golfield La Cima, Lumina Copper S.A.C, Minera Yanacocha, MINSUR, en el sector transporte para Transportes Rodrigo Carranza S.A y en el sector energético el Consorcio Energético Huancavelica.

Entre el 2008 y el 2009 tuvo la oportunidad de participar en los estudios ambientales para los proyectos modificación del estudio de impacto ambiental de Zaldivar, plan de manejo forestal, aclaración, rectificaciones y/o ampliaciones a la declaración de impacto ambiental modificación del proyecto mina Cinabrio y planta Los Mantos y especificaciones técnicas ambientales del proyecto central chacales para los clientes de HidroAysen y Pacific Hydro.

- En el año 2012 prestó servicios al tribunal de fiscalización ambiental del Organismo de Evaluación y Fiscalización Ambiental (OEFA). Como técnico especializado en materia ambiental evaluó expedientes de los subsectores minería e hidrocarburo con recursos de apelación. También, elaboró informes sobre temas relacionados a laboratorios de ensayos acreditados y residuos sólidos. Además, organizó visitas técnicas a laboratorios e Instituto Nacional de Defensa de la Competencia y de la Protección de la Propiedad Intelectual (INDECOPI) para los abogados del área.
- En el año 2013 trabajó en Green Consult SA. como coordinadora de proyectos, en la que fue responsable de la planificación y seguimiento del inventario de pasivos ambientales mineros (IPAM) – zona norte (La Libertad, Ancash y Puno) para la compañía de minas Buenaventura S.A.A
- Del año 2013 al 2015 formó parte del staff de profesionales de la compañía minera Stellar Mining Ltd. sucursal del Perú, trabajó por seis (06) meses como coordinador de medio ambiente en el proyecto princesa (Puno) y once (11) meses como ingeniero de medio ambiente en el proyecto Toropunto (Huaraz). En ambos proyectos fue responsable del cumplimiento de las políticas, procedimientos, compromisos y programas de medio ambiente de acuerdo al instrumento de gestión ambiental aprobado (DIA y EIAsd). Coordinó constantemente con las áreas operativas para la mitigación de impactos ambientales. Fue responsable de la implementación de planes, programas y monitoreos a fin de reforzar el compromiso ambiental. También, reportó a gerencia

las actividades diarias y modificaciones para su comunicación oportuna a los ministerios, además; de preparar y revisar informes o documentos técnicos.

- En el año 2016 trabajó en la unidad estadística del MINEDU. Prestó el servicio de recojo y validación de datos del padrón de instituciones educativas y sistematización de la accesibilidad de instituciones educativas de las UGELs; tales como UGEL Huarmaca (Región Piura), UGEL Piura: distritos de Canchaque, Castilla, Catacaos, Cura Mori y Piura zona 1 (Región Piura) y UGEL Huarmey (Región Ancash) para el programa educación básica para todos.
- El mismo año ingreso a la Autoridad Regional Ambiental del Gobierno Regional de Ucayali (ARAU). Trabajó dos (02) meses en la dirección de gestión del territorio (DGT) y nueve (09) meses en la dirección de conservación y diversidad biológica (DCDB). En la DGT atendió expedientes de petitorio de categorización de centros poblados, brindó opinión técnica sobre nuevas áreas de conservación regional, participó en el diagnóstico de la base de datos del manejo de información cartográfica que maneja al DGT y la infraestructura de datos espacial (IDE).

En la DCDB lideró procesos en la elaboración de expedientes técnicos que sustentaron el establecimiento de áreas de conservación (caso Laguna Encantada de Atalaya -LEA), emitió opinión técnica respecto a los instrumentos de gestión ambiental preventivo o correctivo. También formó parte del equipo para la implementación de la estrategia regional de cambio climático, el desarrollo de la etapa de formulación del proceso de zonificación forestal y del consejo de cuenca Vilcanota – Urubamba.

 En el año 2018 trabajó en el área de modernización de gestión de recursos hídricos (MGRH) del ANA. Como consultor fue responsable de acopiar y sistematizar la información referida a la gestión de los recursos hídricos de la cuenca Vilcanota-Urubamba, para la formulación de los planes de gestión de recursos hídricos. Para el cumplimiento de los objetivos se visitó todos los actores involucrados en la Región Cusco y Región Ucayali.

• En el año 2019 ingresó a Global Yaku Consultores S.A.C en el que laboró como hidrogeóloga de proyectos hasta febrero del 2020. En dicho periodo fue responsable de las coordinaciones para el monitoreo de pozos, así como; la interpretación de los resultados y elaboración de informes. También, manejó de bases cartográficas y datos entornos al SIG para el diseño, desarrollo y actualización de los mapas de estudios hidrogeológicos para los clientes del sector minería como Compañía Minera como Milpo S.A.A, Minera Barrick Misquichilca S.A., Mina Morococha Hudbay Perú SAC, Activos Mineros SAC, Amec Foster Weeler, Knight Piésold Consulting, Compañía minera Argentum S.A., Servicio Nacional de Adiestramiento en Trabajo Industrial (SENATI) y Programa de las Nacional Unidas para el Desarrollo (PNUD).

1.2 Descripción de la empresa

1.2.1 Antecedentes de la empresa

MWH Global Inc. (MWH) fue una firma especializada en servicios ambientales más grande del mundo. MWH ofreció una gama completa de servicios de ingeniería en proyectos de infraestructura y mineros, ciencias ambientales incluyendo monitoreo y mitigación de impactos potenciales, ingeniería sanitaria (agua potable y alcantarillado), gerencia durante la construcción, operación y mantenimiento (O & M), proporcionado soluciones integrales a los más grandes desafíos que sus clientes les confiaron. Siendo una empresa global, mediante su red de oficinas alrededor del mundo estuvo en la posición de proporcionar servicios específicos de ingeniería para los proyectos grandes o pequeños de sus clientes, sean estos públicos o privados (Watson, 2001, p. 2)

MWH surge de la unificación de tres empresas importantes de ingeniería en el 2001, James M. Mongomery Consulting Engineers (JMM), Watson Hawksley Ltd. (Watson) y Harza Engineering Company (Quintanilla, 2012). Así mismo, hay que destacar que también tuvo otras fusiones, siendo el caso de TerraMatrix en el año 1997 y Ground Water International S.A.C. en el año 2008.

JMM fue fundada por James M. Mongomery en Pasadena California en 1945; empresa de consultoría en ingeniería ambiental que se especializó en agua y aguas residuales. Es reconocida por el diseño de la planta de filtración y ablandamiento de agua empleada en el sur de California (Wikipedia, 2020).

Watson Hawksley Engineering Consultants (Watson) fue fundada en High Wycombe, Inglaterra en 1850; empresa centrada en el desarrollo de soluciones integradas para servicios públicos, agencias gubernamentales e industrias privadas (WWD, 2015).

Harza fue fundada por Leroy Francis Harza en Chicago, empresa que se dedicó al desarrollo de los recursos hídricos y con larga historia de proyectos exitosos como la presa Dix (Estados Unidos), la presa Derbendi Khan (1963, Irak) y la hidroeléctrica o proyecto Guri (1963, Venezuela), el Cajón Dam (1980, Honduras) (Business, 2020). Harza llega al Perú en 1996 (Revistel, 2014)

En el 2010, MWH adquirió a la empresa líder en ingeniería y construcción del Reino Unido, Biwater Services Ltd; ampliando más sus habilidades de planificación, diseño y gestión de la construcción para proyectos de agua y recursos naturales en todo el mundo (Wikipedia, 2020).

En la Figura 1, se muestra la línea de tiempo con los principales representantes de las empresas que formaron MWH antes de la llegada al Perú en el año 2001.

Figura 1

Línea de tiempo de MWH

Nota. Se muestra cómo se formó MWH. De "Introducción y experiencia laboral", por Montgomery Watson Chile, 2001, p.58.

La revista semanal estadounidense Engineering News-Record del año 2008, publicación mundial de ingeniería, clasificó a MWH como la #1 en presas, embalses, alcantarillado sanitario y pluvial e hidrogeneración. Y #2 en suministro de agua, líneas de transmisión y acueductos, tratamiento de aguas servidas y desechos sólidos entre las principales empresas internacionales (ENR, 2008).

MMW como empresa privada en el 2009 contó con 165 oficinas en 35 países en todos los continentes, siendo sus principales oficinas las de Denver, Perú, Bruselas y Beijing. Contó con 7 000 empleados, de los cuales 3 500 empleados estaban en América (ver Figura 2)

Figura 2

Oficinas internacionales de MWH

Nota. Se muestra la distribución espacial de las principales oficinas de MWH. De "Introducción y experiencia laboral", por Montgomery Watson Chile, 2001, p.59.

Cabe indicar que en el año 2013 sus trabajadores fueron miembro de la Federación Ambiental del Agua (WEF), organización compuesta por profesionales dedicados a la preservación del agua a nivel mundial (WEF, 2013).

1.2.2 Visión

MWH tuvo como visión reconocer la diversidad proporcionando un ambiente de trabajo en el que se valoran todas las diferencias de opinión y en el que todos los empleados son pare de un equipo orientado al mayor rendimiento, proporcionando servicios de excelente calidad a nuestros clientes y para nosotros mismos (MWH, 2009, p. 4).

1.2.3 Valores

MWH (2009) en su documento titulado *Presente, pasado y futuro* mostró los valores fundamentales e irrenunciables, los cuales se detallan a continuación.

• Nuestros objetivos son alcanzados solo cuando logramos simultáneamente que nuestros clientes sean exitosos y que por ello seamos retribuidos justamente.

- Nuestro personal es nuestro mayor patrimonio y lo desarrollamos, inspiramos y protegemos.
- Somos intransigentes en nuestra determinación de lograr excelencia en todo lo que producimos de manera de mejorar la calidad de vida de todos.
- Nuestra reputación es fundamental para ser exitosos: La honestidad, profesionalismo, conducta ética, e integridad son los pilares de nuestra reputación.
- Estamos comprometidos a involucrarnos, tanto como individuos y como empresa para mejorar las comunidades donde vivimos y trabajamos: Proporcionamos a nuestros empleados igual oportunidad, basados en sus logros, sin importar raza, sexo, credo o nacionalidad de origen.
- La diversidad es un ingrediente esencial para obtener el éxito.

1.2.4 Política social, ambiental, seguridad y salud en el trabajo

MWH fue una empresa que contó con políticas ambientales y sociales a nivel corporativo, además; de las políticas de seguridad y salud en el trabajo que fueron consideradas en todos los proyectos que realizó.

Así mismo, MWH estuvo comprometido en proporcionar a sus trabajadores un ambiente de trabajo seguro, saludable, así como; la enseñanza en el cuidado del medio ambiente. Dicho compromiso fue optado por todos los niveles de la empresa e incluidos en los planes de seguridad, salud y medio ambiente, que presentaba a sus clientes para un trabajo eficiente y efectivo; demostrando que es una empresa segura y con conciencia medioambiental (MWH, 2003, p. 2).

1.2.4.1 Política social. MHW de manera voluntaria incluyó en sus actividades la responsabilidad social, y la llevó a cabo mediante la participación activa entre su equipo de trabajo y la población involucrada directamente en los proyectos. Además, de fomentar el

respeto a las costumbres y tradiciones de las comunidades locales permitiendo de esta manera entablar una buena relación a largo plazo (MWH, 2003, p. 2).

1.2.4.2 Política ambiental. MWH tuvo como política el dar fiel cumplimiento a las medidas de protección ambiental establecidas por las normas (leyes, reglamentos, resoluciones, guías y otros) de los diferentes sectores o niveles de gobierno del país donde se desarrollaba el proyecto. Además, de asumir la política ambiental de sus clientes o empresas consorciadas (MWH, 2009, p. 3)

1.2.4.3 Políticas de seguridad y salud en el trabajo. MWH fue consciente que la mayor parte de los accidentes, enfermedades y daños a la propiedad son previsibles, por ello; el reconocimiento, evaluación y control de la seguridad y la prevención de pérdidas es responsabilidad directa de todos los niveles de la empresa. Para ello el personal de gerencia creó un clima de trabajo en el que todos los empleados desarrollaron una preocupación por la seguridad no solo propia, sino también por la de sus compañeros (MWH, 2003, p. 3).

1.2.4.4 Responsabilidad social, ambiental, seguridad y salud en el trabajo

MWH sostuvo una responsabilidad social, ambiental, seguridad y salud en los trabajos los cuales fueron incluidos en sus propuestas. Para ello MWH, como empresa fue responsable de suministrar materiales, personal y equipo que permita cumplir con todas las normas de seguridad, salud y ambiental en el trabajo (MWH, 2007, p. 4).

A continuación, se detalla brevemente cada responsabilidad que mantuvo MWH con sus clientes.

1.2.4.5 Responsabilidad social. MWH basó la responsabilidad social en la ética y en la inclusión de los intereses de todas las personas o comunidades en el quehacer diario del servicio de consultoría. Así mismo, MWH consideró a los trabajadores su más grande activo por lo que les ofreció programas de capacitación continua para el crecimiento personal como profesional (MWH, 2003, p. 4).

Además, brindó ayuda a las personas de las comunidades no solo en el Perú, también a nivel mundial mediante su participación en cientos de programas de voluntariado que contribuyeron con el medio ambiente y con el desarrollo sostenible, tales como, el intercambio de conocimientos con los jóvenes, (con especial énfasis en las minorías y las mujeres), la preservación de los recursos naturales, la recaudación de dinero para luchar contra enfermedades y el apoyo permanente frente a los desastres naturales (MWH, 2003, p. 5).

Cabe destacar, que una de las maneras de generar confianza de MWH en las comunidades donde trabajaban fue el trabajar con proveedores y subcontratistas que tengan las mismas políticas, valores y compromiso ambientales (MWH, 2003, p. 5).

1.2.4.6 Responsabilidad ambiental. Los trabajadores de MWH y sus contratistas cumplieron estrictamente todas las medidas de control ambiental para prevenir o mitigar los impactos durante la ejecución de los proyectos. Dichas medidas estaban especificadas en los contratos o en los lineamientos del área de medio ambiente de la empresa contratante o cliente.

Del documento introducción y experiencia laboral (2001) se obtuvo nueve responsabilidades ambientales más resaltantes en los proyectos de MWH, las cuales se muestran a continuación:

- cuidado de los cursos de agua naturales,
- minimización de movimiento de tierras,
- protección de la flora y fauna presentes,
- protección de los recursos acuáticos,
- minimización de la generación de polvo y otras emisiones a la atmósfera,
- minimización en la generación de ruidos y manejo adecuado de los residuos que se generen,
- correcta aplicación de respuesta ante derrames,
- minimización en la generación de residuos, y

• capacitación constante en temas ambientales.

1.2.4.7 Seguridad en el trabajo. MWH contó con un staff calificado técnica y profesionalmente que garantizó el cumplimiento de las políticas y procedimientos de seguridad. Además, brindó a sus trabajadores entrenamiento constante, así como; todo tipo de equipos de protección personal (EPP) y las condiciones adecuadas para el cumplimiento de los planes de seguridad en cada proyecto (MWH, 2003, p. 10).

El entrenamiento y experiencia permitió que MWH cuente con líderes técnicos con autoridad competente para tomar las siguientes decisiones en los proyectos:

- suspender las actividades de campo si la salud del personal estuviera en riesgo, y
- suspender las actividades de los subcontratistas por infracciones a los procedimientos de seguridad establecidos, hasta que se efectué una evaluación y erradique la condición subestándar.

1.2.4.8 Salud en el trabajo. El plan general de seguridad, salud y medio ambiente (2003) indicó que MWH era responsable de las condiciones de salud de sus empleados, subcontratistas, visitantes y otros que estén ejecutando trabajos en su nombre, además; de asegurarse que la línea de mando y responsabilidad esté definida, y documentada claramente para que la cobertura de la salud sea integral.

1.2.5 Servicios ambientales, ingeniería y construcción

Los servicios de MWH en el mundo y en el Perú estuvieron dirigidos a las áreas de agua, energía, hidroenergía, minería (ingeniería de presa de relaves, planes de cierre e hidrogeología), irrigación, saneamiento (sistemas de abastecimiento y tratamiento de agua), medio ambiente (estudios de impacto ambiental), estudios de remediación ambiental (tratamiento de pasivos mineros), obras viales entre otros (Watson, 2001, p. 7).

En la Figura 3, se presenta los servicios destacados de MWH entre los años 2008 al 2011.

Figura 3

Servicios de MWH

Nota. Se muestra los principales servicios que realizó MWH. De "MWH pasado, presente y futuro", por MWH, 2009, p.8

1.2.6 Clientes y proyectos

MWH realizó trabajos en Suiza, Rumanía, Paraguay y Argentina y principalmente en Estados Unidos entre los años de 1972 y 2009. En la Tabla 4, se muestra los ocho proyectos internacionales de MWH más destacados (MWH, 2009, p. 10).

Tabla 4

N°	Lugar	Proyecto	Cliente	Periodo	Servicios
1	Argentina-	Aprovechamiento	Entidad	1972 - 2005	Generación
	Paraguay	multifuncional	Binacional		hidroeléctrica
		Yacyretá	Yacyretá		
2	Venezuela	Proyecto	Cvg-	1986 - 1998	Generación
		hidroeléctrico	Electrificación del		hidroeléctrica
		Macagua II	Caroní C. A.		
			(Edelca)		
3	Evanston,	Alcantarillado de la	Municipalidad de	1996 - 1998	Saneamiento
	EE.UU	ciudad de Evanston,	Evanston		
		Fase V			

Proyectos internacionales de MWH

N°	Lugar	Proyecto	Cliente	Periodo	Servicios
4	Eeuu	Minas BHP Copper	Bhp Billinton	1997 - 2005	Minería y medio
		Miami Unit,			ambiente
		Old Dominion,			
		Copper Cities			
5	China	Hidroeléctrico	Ertan	1991 – 1998	Generación
		ERTAN	Hydroelectrical		hidroeléctrica
			Development		
			Corporation		
6	Arizona,	Mina Cyprus Bagdad	Cyprus Bagdad	1999 - 2002	Minería
	EE.UU		Mine		
7	Baar, Suiza	Complejo Minero	Jsc Kazzinc Y	1999	Minería y medio
		Leninogorsk	Glencore		ambiente
			International Asg,		
8	Rumania	Mina de Oro Rosia	Rosia Montana	2002 - 2009	Minería
		Montana	Gold Corporation		
			S.A. (Rmgc)		

Nota. Destaca en primer lugar el servicio de generación eléctrica, seguido de minería. Adaptado de *MWH presente, pasado y futuro*, por MWH, 2009.

MWH inició trabajos en el Perú desde 1994 destacando sus proyectos en los sectores de minería, saneamiento, hidroeléctrico y ambiental. En la Tabla 5, se muestra los once proyectos más destacados realizados en el Perú.

Tabla 5

Proyectos de MWH realizados en Perú

N°	Lugar	Proyecto	Cliente	Periodo	Servicios
1	Lima y	Rehabilitación de los	Sedapal	1997 - 2003	Ingeniería y
	Callao	sistemas de agua			supervisión de obras
		potable y			
		alcantarillado			
2	Cajamarca	Minera Yanacocha	Compañía	1998 - 2008	Minería y medio
			Minera		ambiente
			Yanacocha		

N°	Lugar	Proyecto	Cliente	Periodo	Servicios
3	Ayacucho	Presa Cuchoquesera	Instituto	1999 - 2001	Ingeniería y
		diques laterales y	Nacional De		supervisión de obras
		obras conexas	Desarrollo		
			(INADE)		
4	Junín	Sistema	Electroperu	2000 - 2009	Scada
		hidrometeorológico			hidrometeorológico
		de la Cuenca del			
		Mantaro			
5	Cajamarca	Presas de Hardfill Rio	Compañía	2002 - 2009	Control de
		Grande y Rio Rejo	Minera		sedimentos
		Mina Yanacocha	Yanacocha		
6	Ancash	Proyecto remediación	Compañía	2003 -2006	Presa de relaves
		de filtraciones en la	Minera		
		presa de relaves de	Antamina,		
		Antamina	Perú		
7	Arequipa	presa de relaves Cerro	Sociedad	2003 - 2009	Minería
		Verde	Minera Cerro		
			Verde		
8	Cajamarca	Planta de tratamiento	Minera	2004	Abastecimiento de
		de agua potable El	Yanacocha		agua potable
		Milagro			
9	La Oroya	Planta central de	De Doe Run	2005 - 2006	Optimización de
		tratamiento de			planta de tratamiento
		efluentes industriales			
10	Cajamarca	Proyecto Cerro	Minera Gold	2005 - 2009	Minería y medio
		Corona	Fields La		ambiente
			Cima S.A.,		
			Perú		
11	Cusco	Presa de arena	Bhpb Tintaya	2005 - 2009	Minería y medio
		cicloneada - Mina			ambiente
		Tintaya			

Nota. MWH destacó en proyectos para empresas mineras. Adaptado de *MWH presente, pasado y futuro*, por MWH, 2009.

También tuvo participación en el diseño o supervisión de centrales hidroeléctricas como: ampliación Yaupi 25 MW, Huanza 96 MW, Marañón 90 MW y Santa Teresa 100MW (Revistel, 2014). Además, la oficina de programación e inversiones de SEDAPAR S.A. otorgó a MWH la declaración de viabilidad al estudio desarrollado a nivel de perfil, como lo indica en el Decreto Supremo N° 121.2008-EF.

1.3 Organigrama de la empresa

MWH (2009) en su publicación titulada *MWH presente, pasado y futuro*, mostró que estuvo organizada de tal forma que cualquier oficina pudo acceder a la experiencia especializada y específica de cada uno de sus expertos en todo el mundo. Contó con una red mundial de comunicación que permitió a todo el personal estar en contacto instantáneo, transferir información e intercambio tecnológico.

MWH contó con 165 oficinas en 35 países alrededor del mundo, estas fueron agrupadas en oficinas corporativas destacando las de Bruselas, Denver, Beijing y Perú. Dichas oficinas fueron administradas por las sedes regionales (ver Tabla 6)

Tabla 6

Listado de oficinas de MWH

Sedes	Ubicación
MWH Energía e	Chicago, Illinois - U.S.A.
Infraestructura	
MWH Américas	Broomfield, Colorado - U.S.A.
MWH Europa	High Wycombe - Reino Unido
MWH Asia	Singapur

Nota. Se muestra las sedes de MWH en el año 2001. Adaptado de *MWH presente pasado y futuro*, por MWH, 2009.

La oficina regional de América Latina y el Caribe contó con un director donde el Perú tuvo un gerente de país, quien se encargó de cuatro gerencias; la de ingeniería, socioambiental, hidrogeneración e hidrogeología (ver Figura 4)

Figura 4 *Organigrama de la oficina regional de América Latina y El Caribe*

Nota. No se incluye las oficinas de otros continentes. Adaptado de *Introducción y experiencia laboral*, por Montgomery Watson Chile, 2001.

1.3.1 Equipo humano de MWH

MWH contó con 5 500 empleados repartidos mundialmente y comprometidos en brindar servicios profesionales del más alto nivel. La revista *Engineering News-Record* nombró a MWH "empleado número 1 en medio ambiente".

MWH estuvo compuesto principalmente por un grupo de ingenieros, seguido de los científicos, expertos en computación, construcción, planificadores y analistas de costos. En la Figura 5, se observa que MWH contó con empleados agrupados de la siguiente manera: ingenieros (46%), científicos (27%), expertos en computación (10%), construcción (7%), laboristas (5%), planificadores (3%) y analistas de costos (2%) (Watson, 2001, p. 16).

Figura 5

Distribución de empleados en MWH

Nota. Se consideró a los trabajadores de todas las sedes de MWH. Adaptado de *Introducción y experiencia laboral*, por Montgomery Watson Chile, 2001.

1.4 Áreas y funciones desempeñadas

El autor inició su trabajo en MWH (octubre del 2005) en el área de medio ambiente. Área que fue cambiada de denominación por área de asuntos socioambientales que a su vez se dividía en el área de estudios ambientales, área de proyectos ambientales y área social.

El autor trabajó inicialmente como monitor ambiental en el área de medio ambiente y como especialista ambiental en área de estudios ambientales. Cabe resaltar que el autor también, apoyó en la elaboración de los mapas de los diferentes estudios.

A continuación, se detalla las funciones que realizó el autor en las áreas mencionadas dentro de la empresa MWH.

1.4.1 Área de medio ambiente

El autor empezó a trabajar en el área de medio ambiente desde octubre del 2005 hasta junio del 2007. en dicho periodo trabajó como monitor ambiental (calidad de agua superficial, agua subterránea y sedimento) y como especialista SIG para el proyecto "Programa de Monitoreo de Calidad de Agua del proyecto Minero El Galeno" del cliente LUMINA. A continuación, se detalla las funciones que realizó el autor en el área ambiental teniendo en cuenta las políticas de seguridad y medio ambiente de MWH y el cliente (LUMINA):

- preparó los materiales, equipos y suministros para el monitoreo, en coordinación con el laboratorio,
- verificó la calibración de los equipos (GPS, multiparámetro, turbidímetro y correntómetro) antes de salir al campo.
- realizó el plan de monitoreo,
- ejecutó el plan de monitoreo, cumpliendo con los procedimientos y protocolos de monitoreo,
- realizó el control de calidad del muestreo y mediciones de parámetros de campo,
- llenó correctamente los formatos de campo (cadena de custodia, parámetros de campo, etc.),
- elaboró el informe de campo,
- ingresó los resultados analíticos del laboratorio a una base de datos para su comparación con el Estándar de Calidad Ambiental para el agua (ECA agua), y
- elaboró los mapas del informe de monitoreo.

1.4.2 Área de asuntos socioambientales

El autor trabajó como especialista ambiental en el área de asuntos socioambientales desde julio del 2007 hasta marzo del 2012. En dicho periodo participó en la descripción de la línea base (recursos hídricos, calidad de agua, geología, suelo y arqueología) de los instrumentos de gestión ambiental (DJ, EIAd y EIAsd).

También participó en el desarrollo de planes de monitoreos ambientales, planes de cierre, planes de adecuación ambiental, diagnóstico ambiental, así como; memorias descriptivas para la obtención del Certificado de Inexistencia de Restos Arqueológicos (CIRA)

y autorización de vertimientos o uso de recursos hídricos; ante el Ministerio de Cultura (MINCU) y ANA, respectivamente.

Cabe indicar que los trabajos realizados fueron para el sector minero que tuvo como principales clientes a EASTPAC Minerals, Golfield La Cima, LUMINA, Minera Yanacocha, MINSUR. En el sector transporte el cliente fue Transportes Rodrigo Carranza S.A; y en el sector energético el Consorcio Energético Huancavelica, Santa Teresa y Huanza.

A continuación, se detalla los proyectos y funciones que realizó el autor en el Estudios Ambientales:

- apoyó en la elaboración de propuestas técnico económico para estudios y servicios ambientales,
- desarrolló la memoria descriptiva para el MINCU sede Cajamarca para la obtención del CIRA para el proyecto Cerro Corona – CIRA. Cliente Goldfields – La Cima S.A,
- desarrolló el componente de calidad de agua superficial y la hidroquímica del agua superficial y subterránea; este último en coordinación con el especialista senior del proyecto titulado *V modificación del estudio de impacto ambiental (EIA) del proyecto Cerro Corona - actualización de optimización II*. Cliente Goldfields – La Cima S.A,
- describió la línea base (componentes de calidad de agua superficial, suelo y arqueología) del proyecto titulado *Tercera modificación del EIA semidetallado del proyecto de exploración categoría "C" El Galeno – ampliación de campamento*. Cliente LUMINA,
- lideró de monitoreo de calidad de agua superficial del proyecto titulado *Programa de monitoreo de calidad de agua del proyecto minero El Galeno*. Cliente LUMINA,
- lideró de monitoreo de calidad de agua mensual y trimestral del proyecto titulado Estudio de impacto ambiental del componente mina, del sistema de transporte de

concentrados de mineral y del puerto de Muchik del proyecto de explotación El Galeno. Cliente LUMINA,

- coordinó y desarrollar el estudio hidrológico para la obtención de la autorización de vertimiento de aguas residuales tratadas de mina del proyecto titulado *Evaluación de calidad de agua de los cuerpos receptores de la mina San Rafael* en Puno. Cliente MINSUR,
- lideró del monitoreo del proyecto titulado Monitoreo mensual de calidad de agua del proyecto central hidroeléctrico Huanza. Cliente Consorcio Energético Huancavelica S.A,
- describió los componentes del proyecto, desarrolló la línea base y actualizó los planes de manejo y monitoreo ambiental, además; elaboró los planos del proyecto titulado *Actualización del plan de manejo ambiental* del proyecto Central Hidroeléctrico Huanza. Cliente Consorcio Energético Huancavelica S.A,
- levantó las observaciones que realizó el MEM al estudio de impacto ambiental del proyecto suplementario Yanacocha Oeste. Cliente Minera Yanacocha,
- elaboró las figuras y mapas temáticos del proyecto titulado *Estudio de impacto* ambiental semi detallado del proyecto de transporte y embarque de concentrados de minerales en puerto Salaverry. Cliente Transportes Rodrigo Carranza S.A,
- describió la línea base, descripción del proyecto, levantó observaciones realizadas por el MEM a la declaración jurada categoría B del proyecto de exploración El Molino. Cliente EASTPAC Minerals Perú S.A, y
- elaboró figuras y mapas de todos los proyectos mencionados.

II Descripción de una actividad específica

El presente capítulo describe la actividad que se realizó para elaborar del plan de monitoreo de calidad de agua de año 2010 como parte del programa de monitoreo de calidad de agua del proyecto minero El Galeno; el cual fue aprobado por el cliente LUMINA. Es importante mencionar que el plan de monitoreo de calidad de agua, contempló el programa mensual y el programa trimestral, el cual consideró las estaciones del plan de manejo ambiental (PMA) aprobado en la *Segunda modificación del EIAsd del proyecto de exploración El Galeno* mediante la R. D. Nº 054- 2010-MEM/AMM.

Cabe mencionar que MWH fue contratado por LUMINA desde junio del 2005, para ejecutar el programa de monitoreo de calidad de agua de los principales recursos hídricos (manantiales, lagunas, quebradas, ríos, agua potable y efluentes) ubicados en el área de influencia del proyecto minero El Galeno. El autor ingresó en el 2005 a MWH para ser responsable de los monitoreos de calidad de agua y de los informes de resultados, los cuales fueron presentados a la dirección general de asuntos ambientales mineros del MEM hasta el año 2012.

2.1 Alcances

2.1.1 Descripción del área del estudio donde se desarrolló la actividad

El Galeno fue un proyecto minero polimetálico (cobre, molibdeno, oro y plata) conformado por cinco concesiones mineras (El Galeno, Galeno 1, Galeno 10, Galeno 11 y El Molino) que hacen un total de 2 347.5 Ha. Desde el año 2003 el proyecto El Galeno estuvo en etapa de exploración y fue operado por la empresa LUMINA.

2.1.1.1 Ubicación del área de estudio. El área de estudio fue el proyecto El Galeno se ubicó entre los 3800 msnm y 4200 msnm, al Noreste de la ciudad de Cajamarca, abarcando los distritos de La Encañada (provincia de Cajamarca) y el distrito de Sorochuco (provincias de Celendín). En el ámbito del proyecto se encuentran los caseríos de Yerba Buena Alta, San
Juan de Yerba Buena, El Porvenir de Yerba Buena, Río Grande, Guagayoc, Chamcas, Rodacocha y Sogorón Alto, Santa Rosa de Milpo, El Punre y Quengomayo, San Lorenzo de Lípiac, La Chorrera y Los Sartenes.

En la Tabla 7, se detalla los catorce caseríos en donde se ubicó el proyecto El Galeno.

Tabla 7

Detalle de la ubicación de caseríos del proyecto El Galeno

Departamento	Provincia	Distrito	Caserío
Cajamarca	Cajamarca	Encañada	Yerba Buena Alta
			San Juan de Yerba Buena
			El Porvenir de Yerba Buena
			Rodacocha
			Chamcas
			Guagayoc
			Sogorón Alto
			Río Grande
	Celendín	Sorochuco	Santa Rosa de Milpo
			El Punre
			Quengomayo
			San Lorenzo de Lípiac
			La Chorrera
			Los Sartenes

Nota. Relación de caseríos teniendo en cuenta el distrito y provincia al que pertenecen. De "Resumen ejecutivo de la tercera modificación del EIAsd del proyecto de exploración El Galeno - ampliación del campamento", por MWH. 2011, p21.

El acceso al proyecto El Galeno por vía área o terrestre desde la ciudad de Lima hasta la ciudad de Cajamarca, luego por carretera afirmada, hasta el pueblo de La Encañada, y finalmente por trocha carrozable hasta el área del proyecto. En la Tabla 8, se muestra los detalles de distancias y tiempos hacia el proyecto El Galeno.

Tabla 8

Distancias al proyecto El Galeno

Ruta	Distancia	Carretera	Tiempo
	acumulada		
	(km)		
Lima - Cajamarca	870	Asfaltada	12 h
Cajamarca - Baños del Inca	6	Asfaltada	0h 7 min
Baños del Inca – pueblo La Encañada	34	Asfaltada	1h 00 min
pueblo La Encañada - Bifurcación	43	Asfaltada	1h 10 min
Michiquillay-Celendín			
Bifurcación Michiquillay-Celendín –	48	Trocha	1h 25 min
desvío Rodacocha		Carrozable	
Desvío Rodacocha – desvío Punrre	61	Trocha	1h 50 min
		Carrozable	
Desvío Punrre – desvío Campamento "El	65	Trocha	2h 00 min
Galeno"		Carrozable	

Nota. Los tiempos indicados son aproximados. De "Resumen ejecutivo de la tercera modificación del EIAsd del proyecto de exploración El Galeno - ampliación del campamento", por MWH, 2011, p21.

Hidrográficamente el proyecto El Galeno abarcó las cabeceras de cuenca de la Quebrada Chanche y del Río Grande, también se emplazó en el área de drenaje en la quebrada Chamcas, conocida localmente como Kerosene, (ver Figura 6)

Ubicación del proyecto El Galeno

Nota. Se muestra todas las concesiones que forman el proyecto El Galeno. Adaptado de la *R.D N° 054-2010-MEM/AAM*, por el MEM, 2010 (<u>http://intranet2.minem.gob.pe/web/dgaam/certificado_EA_new.asp?Anio=2010&Mes=02&radio1=E&submit=Consulta</u>). En el dominio público

2.1.2 Instrumentos de gestión ambiental del proyecto El Galeno

Es importante indicar que la actividad desarrollada fue parte del programa de monitoreo de calidad de agua y efluentes mencionado en diferentes estudios aprobados por la autoridad competente (MEM). A continuación, la relación de los estudios aprobados del proyecto El Galeno (EIAsd, 2011).

- LUMINA en el año 2005 obtuvo la aprobación del proyecto de exploración Categoría C El Galeno (R.D. Nº 049-2005-MEM/AAM), autorizando la habilitación de 100 plataformas. A mediados del 2006, se aprobó una modificación ampliando el cronograma aprobado.
- EASTPAC-MANSA en el año 2005 obtuvo la aprobación del proyecto de exploración Categoría B El Molino (R.D Nº 515-2005-MEM/AAM), autorizando la habilitación de 20 plataformas de perforación.
- EASTPAC-MANSA en el año 2007 obtuvo la aprobación del proyecto de exploración Categoría C El Molino (R.D Nº 038-2007-EM/AMM), autorizando la habilitación de 121 plataformas de perforación.
- LUMINA en el año 2007 obtuvo la aprobación del proyecto de exploración Categoría
 C El Galeno (R.D Nº 170-2007-EM/AMM), autorizando la habilitación de 224
 plataformas de perforación.
- LUMINA en el año 2009 obtuvo la aprobación de la modificación del EIAsd del proyecto de exploración Categoría II El Galeno 2007 – LUMINA (R. D. Nº 214-2009-EM/AMM del 16 de julio del 2009), autorizando la habilitación de 138 plataformas de perforación.

LUMINA en el año 2010 obtuvo la aprobación de la segunda modificación del EIAsd del proyecto de exploración El Galeno 2009 *Mejoramiento del Campamento y Perforaciones Adicionales* (R. D. Nº 054- 2010-MEM/AMM del 12 de febrero del 2010), autorizando la

habilitación de 32 plataformas de perforación, así como; el mejoramiento e implementación de instalaciones adicionales como el campamento de exploraciones El Galeno.

En la Figura 7, se puede observar que en la actualidad el proyecto El Galeno se encuentra en la fase de prefactibilidad (f).

Figura 7

Estado actual del proyecto El Galeno

	Explo	oración		Prefactibilidad		Factibilidad		Ing. Detalle			Construcción	
а	b	с	d	е	f	g	h	i	j	k	I.	m
~	~	~	~	~	٠							
A: DIA - In B: DIA - Aj C: EIA sd- D: EIA sd-	A: DIA - Inicio de elaboración B: DIA - Aprobado. C: EIA ad-Inicio de elaboración D: EIA ad - Aprobado		E: EIA - Inicio de elaborad F: Estudio de prefactibilid	ión ad - finalizado	G: Estudio de factibil H: EIA - Aprobado	idad - finalizado	I: Plan de mina J: Concesión d K: Concesión d	do - Aprobado e beneficio aproba le beneficio aproba	ado Etapa A ado Etapa B	L: Inicio de etap M: Fin de etapa	a de construcción de construcción	
Leyenda:: DIA: Declara EIA: Estudio	enda: Declaración de Impacto Ambiental											

Nota. Muestra los instrumentos ambientales aprobados hasta mayo del año 2020 del proyecto El Galeno. De "Plataforma gestión proyecta MINEM", por MINEM, 2020 (http://proyecta.minem.gob.pe/Construccion/Ficha/1/63?idioma=Espa%C3%B1ol&id_version=35&version=Ma yo%202020&id_proyecto=63)

2.2 Descripción del plan de monitoreo de calidad de agua del proyecto El Galeno

Es importante indicar que el plan de monitoreo de calidad de agua del proyecto El Galeno, que se describe a continuación, se elaboró en el 2010 y fue aprobado para LUMINA, es decir; es un documento previo a la salida de campo.

Cabe resaltar que el plan consideró el PMA aprobado en la segunda modificación del EIAsd del proyecto de exploración El Galeno 2009, en el que realizaron mejoramiento al campamento y perforaciones adicionales. Se aprobó con la R. D. Nº 054- 2010-MEM/AMM.

El plan de monitoreo consideró la normativa nacional vigente del 2010, por lo que en el ítem III, se realiza un análisis comparativo con la normativa actual (2019) aprobada por la ANA.

El plan de monitoreo tuvo una estructura corta pero puntual, compuesto de objetivos, normativa aplicada, relación de estaciones, parámetros de campo y la metodología de trabajo. En la metodología de trabajo se describió los procedimientos del monitoreo en campo, manejo de muestras y documentación, metodología analítica, manejo y validación de datos y control de calidad.

A continuación, se describe el plan de monitoreo de calidad de agua elaborado para el proyecto El Galeno.

2.2.1 Objetivos

2.2.1.1 Objetivo General. El informe tiene como objetivo general contar con una herramienta que centre todos los procedimientos del monitoreo de calidad de agua a fin de garantizar el trabajo de campo y gabinete.

2.2.1.2 Objetivos Específicos. A continuación, se muestra los objetivos específicos del presente informe:

- Definir las estaciones de monitoreo
- Disminuir los errores en las actividades del monitoreo
- Precisar la documentación, materiales y equipos antes de la salida de campo
- Definir los lineamientos para la caracterización de los recursos hídricos dentro del área de influencia del proyecto El Galeno
- Establecer los métodos de control y aseguramiento de la calidad de los datos obtenidos en campo y los proporcionados por el laboratorio

2.2.2 Normativa aplicada

El plan de monitoreo se basó en los protocolos y procedimientos de la normativa nacional (MEM y MINAM) e internacional, environmental protection agency (EPA) vigente en el año 2010.

2.2.2.1 Normativa nacional. Respecto a la normativa nacional se tomó como base la Constitución Política del Perú del año 1993, donde el artículo 2° inciso 22 establece el derecho a un ambiente equilibrado y adecuado para el desarrollo de la vida de las personas. También se consideró la siguiente normativa:

- Artículo I de la Ley N° 28611 (Ley general del ambiente), señala que toda persona tiene derecho irrenunciable a vivir en un ambiente saludable, equilibrado y adecuado para el pleno de desarrollo de la vida.
- Ley N° 29338 (Ley de recursos hídricos).
- Resolución Directoral Nº 004-94-EM/DGAA, aprobó la guía de monitoreo de agua para la actividad minero metalúrgicas.
- Resolución Ministerial N° 011-96-EM/VMM, aprobó los niveles máximos permisibles para efluentes líquidos para las actividades minero-metalúrgicas.
- Decreto Supremo N° 002-2008-MINAM, aprobó los estándares nacionales de calidad ambiental para agua.
- Resolución Jefatural N° 202-2010-ANA, aprobó la clasificación de cuerpos de agua superficial y marino-costero.

2.2.2.2 Normativa internacional. Cabe indicar que se tomó en cuenta como normativa internacional a la agencia de protección ambiental (EPA) del año 1986, la agencia federal de Estados Unidos creada en 1970 para la protección del ambiente y la vida; y la American Public Health Association (APHA) (Association, 1998), para los procedimientos de muestreo, preservación de muestra, control de calidad, manejo de datos, etc.

2.2.3 Estaciones de monitoreo

El plan de monitoreo consideró el programa de monitoreo mensual y trimestral. El programa de monitoreo mensual contó con 25 estaciones para muestreo (agua superficial, manantiales, agua de campamento y efluente doméstico) y 15 estaciones de medición de parámetros de campo.

En la Tabla 9, se muestra los detalles de la ubicación y descripción de las estaciones de monitoreo de calidad de agua del programa mensual (MWH, Informe de resultado de monitoreo mensual de calidad de agua, mayo 2011. Microcuenca Río Grande, 2011).

Tabla 9

24

25

M9B

P1A1

9226108

9225955

794326

793629

N°	Estación	Ubicación		Ubicación
	de	(coordenadas		
	monitore	UTN	л)	
		Norto	Fata	
	0	Inorte	Este	
Agua	a superficial			
1	M1	9226231	793972	Qda. Chamcas
2	M2	9227171	794858	Qda. Kerosene
3	M6	9229084	795455	Lag. La Rinconada
4	M7	9228775	796752	Descarga de Lag. Dos colores
5	M8	9228080	797469	Lag. Milpo
6	M17	9226820	790994	Qda. Hierbabuena
7	M22	9226805	796657	Lag. Yanacocha
8	M24	9226264	800446	Qda. Milpo
9	M27	9230115	796176	Lag. Lipiac
10	M34	9226642	799887	Cueva del Gato
11	M35	9227919	798750	Reservorio Mullo
12	M44	9229145	796201	Lag. Dos Colores - Laguna Oeste
13	M45	9229262	796280	Lag. Dos Colores - Laguna Este
14	M46	9228791	790877	Qda. Chaquicocha, aguas arriba de la confluencia con río
15	M47	9227903	789790	Qda. Chaquicocha
16	M48	9223712	791939	Qda. Chamcas, aguas arriba de la confluencia con el río
				Grande
Agua	a de campar	nento y eflu	ente domé	stico
17	M36	9228869	795865	Agua potable de campamento
18	AR00	9228662	795862	Agua residual
Man	antiales			
19	S12	9227394	793743	Guagayoc, tanque de agua para consumo doméstico
20	S24	9228367	792179	San Juan de Yerba Buena, agua para consumo doméstico
21	S25	9230460	793023	Santa Rosa de Yerba Buena, agua para consumo
22	S26	9226951	792097	Toldopata, tanque de agua para consumo doméstico
23	S27	9229981	797032	La Chorrera, manantial de agua para consumo doméstico

Estaciones de monitoreo de calidad de agua - programa mensual

Nota. Las coordenadas están en el sistema PSAD 56 Zona 17 Sur. De "Informe de resultados de monitoreo mensual de calidad de agua mayo 2011", por MWH, 2011, p.19.

Chamcas, agua para consumo doméstico - Tanque #1

Caja de reunión de agua del Proyecto PIASAA

En la Tabla 10, se muestra los detalles de la ubicación y descripción de las estaciones

de medición de parámetros de campo del programa mensual, y su ubicación se observa en la

Figura 8.

Tabla 10

Estaciones de medición de parámetros de campo - programa mensual

N°	Estación	Ubicación		Descripción
	de	(coorde	enadas	
	monitoreo	UT	M)	
		Norte	Este	
1	S 1	9225814	794169	Manantial El Ojo De Peje - Proyecto PIASAA
2	S2	9226185	793921	Manantial Puente Viejo - proyecto PIASAA
3	S3	9226124	793915	Manantial El Moro - proyecto PIASAA
4	S4	9226070	793803	Manantial La Peña Mala - proyecto PIASAA
5	S5	9226083	793730	Manantial La Chilca I - proyecto PIASAA
6	S 6	9225984	793645	Manantial El Suro - proyecto PIASAA
7	S7	9225971	793638	Manantial Uñigan - proyecto PIASAA
8	S 8	9226494	793672	Manantial El Derrumbe - proyecto PIASAA
9	S9	9227544	795437	Manantial S/N (Chamcas)
10	S10	9227744	794037	Manantial El Palo Solo (Guagayoc)
11	S11	9227744	793945	Manantial S/N (Guagayoc)
12	S13	9226234	794551	Chamcas, Captación de agua para consumo doméstico
13	S14	9226327	794516	Chamcas, Captación de agua para consumo doméstico
14	S15	9226378	794597	Chamcas, Captación de agua para consumo doméstico
15	S16	9226379	794630	Chamcas, Captación de agua para consumo doméstico
16	S17	9226382	794613	Chamcas, Captación de agua para consumo doméstico
17	S18	9227418	794129	Manantial La Cama de los Buitres (Guagayoc)
18	S19	9227506	793785	Manantial La Masma (Guagayoc)
19	S20A	9225136	793377	Manantial en Chamcas (En propiedad de Sra. Margarita
20	S20B	9225249	793604	Manantial en Chamcas (En propiedad del Sr. Genaro
21	S21A	9224996	794576	Manantial S/N (Chamcas)
22	S21B	9224987	794678	Manantial en Chamcas (En propiedad de la Sra. Maria
23	S21C	9225053	794900	Manantial en Chamcas (En propiedad del Sr.
24	S21D	9225100	794883	Manantial en Chamcas (En propiedad del Sr.
25	S21E	9225137	795026	Manantial en Chamcas (En propiedad del Sr. Alcillades
26	S22A	9227892	793604	Manantial S/N (Yerba Buena Alta)
27	S22B	9227508	793323	Manantial S/N (Yerba Buena Alta)
33	S30B	9225719	796755	Sogorón Alto, captación de agua para consumo
34	S30C	9225484	796751	Sogorón Alto, captación de agua para consumo

N°	Estación	Ubica	ación	Descripción
	de	(coordenadas		
	monitoreo	UTM)		
		Norte	Este	
35	S30D	9225432	796636	Sogorón Alto, captación de agua para consumo
36	S32B	9223762	794804	Rodacocha, captación de agua para consumo doméstico
37	S32C	9223689	794750	Rodacocha, captación de agua para consumo doméstico
38	S34A	9225144	795570	El Pedregal, captación de agua para riego
39	S34B	9224851	795123	El Pedregal, captación de agua para consumo

Nota. Las coordenadas están en el sistema PSAD 56 Zona 17 Sur. De "Informe de resultados de monitoreo mensual de calidad de agua mayo 2011", por MWH, 2011, p.17.

Estaciones de monitoreo de calidad de agua - programa mensual

Nota. Se muestra las estaciones del monitoreo mensual. De "Informe de resultados del monitoreo mensual de calidad de agua mayo 2011", por MWH, 2011, p14

El plan de monitoreo también contó con el programa trimestral. Este programa estuvo conformado por 72 estaciones de monitoreo (agua superficial, manantiales y efluentes) de las cuales 13 estaciones se ubicaron en la microcuenca del Río Grande (sector Hierba Buena), 26 estaciones en la microcuenca del Río Grande (sector Chamcas), 22 estaciones en la microcuenca del Río Grande (sector Chamcas), 22 estaciones en la microcuenca del Río Grande (sector Chamcas), 21 estaciones en la microcuenca del Río Grande (sector Chamcas), 21 estaciones en la microcuenca del Río Chirimayo.

En la Tabla 11, se muestra los detalles de la ubicación y descripción de las estaciones de monitoreo de calidad de agua del programa trimestral aprobado por LUMINA.

Tabla 11

Estaciones de monitoreo de calidad de agua - programa trimestral

N°	Estación de	Coordenadas de		Cuerpo	Ubicación
	monitoreo	ubicación		de agua	
		Norte	Este		
Micr	ocuenca del Río	Grande (se	ctor Hierb	a Buena)	
1	M46	9228791	790877	Qda.	Qda. Pilucnioc, aguas arriba de la
				Pilucnioc	confluencia con río Grande
2	M47	9227903	789790	Qda.	Qda. Pilucnioc
				Pilucnioc	
3	M16	9228579	792839	Qda.	Qda. Hierbabuena, ubicada
				Hierbabue	aproximadamente a 100 m aguas arriba de
				na	la confluencia de la Qda. Capa Rosa y la
					Qda. Quishquimayo.
4	M17	9226820	790994	Qda.	Qda. Hierbabuena, ubicada
				Hierbabue	aproximadamente a 100 m aguas abajo
				na	del desvío de las aguas de la Qda.
					Quishquimayo.
5	M19	9225924	790302	Qda.	Qda. Hierbabuena
				Hierbabue	
				na	
6	M18	9226107	790245	Río	Rio Grande, aproximadamente a 200 m
				Grande	aguas arriba de la confluencia con la Qda.
					Quishquimayo, ubicado aproximadamente

N°	Estación de	Coordena	adas de	Cuerpo	Ubicación
	monitoreo	ubicad	ción	de agua	
		Norte	Este		
					a 100 m aguas arriba de la confluencia
					con Río Grande.
7	M20	9225843	790281	Rio	Río Grande, aproximadamente a 300 m
				Grande	aguas abajo de la confluencia con la Qda.
					Quishquimayo.
8	S22	9228105	793284	Manantial	Agua para consumo directo en la escuela
					de Yerba Buena Alta
9	S23	9229061	791606	Manantial	Agua para consumo en El Porvenir de
					Yerba Buena
10	S24	9228367	792179	Manantial	Agua para consumo directo en San Juan
					de Yerba Buena
11	S25	9230460	793023	Manantial	Santa Rosa de Yerbabuena, consume de
					agua directo (en la propiedad de María
					Felicita Sánchez Huamán)
12	S26(a)	9226951	792097	Manantial	Agua para consumo directo en Toldopata
					(en la propiedad del Sr. Santos Sánchez
					Morales y Mr. Eladio Cortez Chaupe)
13	P11	9227530	792244	Agua	Pozo (piezómetro artesiano) en área de
				subterránea	drenaje de la Qda. Hierbabuena.
		Micro	cuenca de	l Río Grande ((sector Chamcas)
14	M1	9226231	793972	Qda.	Ubicada en la quebrada,
				Chamcas	aproximadamente 250 m aguas arriba del
					puente Chancas-Toldopata.
15	M2	9227171	794858	Qda.	Ubicada aproximadamente 30 m aguas
				Kerosene	arriba de la bocatoma del canal de
					Toldopata.
16	M4	9228430	795279	Laguna/Qd	Ubicada aproximadamente 35 m aguas
				a. Cama de	abajo en la quebrada formada por la
				los	descarga de la Laguna.
				Shingos	
17	M5	9227699	795902	Laguna	En la orilla noroeste de la Laguna
				Kerosene	Kerosene.

N°	Estación de Coordenadas de		adas de	Cuerpo	Ubicación		
	monitoreo	ubica	ción	de agua			
		Norte	Este				
18	P7	9227072	794674	Agua	Pozo (piezómetro artesiano) en área de		
				Subterráne	drenaje de Qda. Chancas		
				а			
19	M9B	9226108	794326	Manantial	Agua para consumo doméstico - Tanque		
					#1, ubicada en la descarga del tanque de		
					captación de agua para Chancas.		
20	S 1	9225814	794169	Manantial	Manantial El Ojo de Peje - proyecto		
					PIASAA		
21	S2	9226185	793921	Manantial	Manantial Puente Viejo - proyecto		
					PIASAA		
22	S 3	9226124	793915	Manantial	Manantial El Moro - proyecto PIASAA		
23	S4	9226070	793803	Manantial	Manantial La Peña Mala - proyecto		
					PIASAA		
24	S 5	9226083	793730	Manantial	Manantial La Chilca I - proyecto		
					PIASAA		
25	S 6	9225984	793645	Manantial	Manantial El Suro - proyecto PIASAA		
26	S 7	9225971	793638	Manantial	Manantial Uñigan - proyecto PIASAA		
27	S8	9226494	793672	Manantial	Manantial El Derrumbe - proyecto		
					PIASAA		
28	S12	9227394	793743	Manantial	Gualgayoc, tanque de agua para consumo		
					doméstico		
29	S34	9224268	793193	Manantial	Tanque de agua para consumo directo en		
					El Pedregal		
30	M48	9223712	791939	Qda.	Qda. Chamcas, aguas arriba de la		
				Chamcas	confluencia con río Grande		
31	M22	9226805	796657	Laguna	Lag. Yanacocha, Aproximadamente a 7 m		
				Yanacocha	aguas arriba de la compuerta ubicada en		
					la Qda. Yanacocha.		
32	M9C	9225716	794884	Manantial	Chamcas, agua para consumo doméstico -		
					Tanque #2		
33	S30A	9221516	792552	Manantial	Tanque de agua para consumo directo en		
					Sogorón Alto		

N°	Estación de	Coordena	idas de	Cuerpo	Ubicación
	monitoreo	ubicac	ción	de agua	
	-	Norte	Este		
34	S32A	9223543	794722	Manantial	Tanque de agua para consumo directo en
					Rodacocha
35	M21B	9223847	793811	Qda.	Qda. Yanacocha (Puente Pedregal -
				Yanacocha	Rodacocha)
36	M21	9222840	791806	Río Grande	Río Grande, aproximadamente a 180 m,
					aguas abajo de la confluencia con Qda.
					Yanacocha.
37	M37	9227640	794263	Bofedal	Bofedal Pajablanca
				Pajablanca	
38	M43	9216891	787304	Río Chonta	Río Chonta (Tres Tingos)
39	P1A1	9225955	793629	Agua	Caja de reunión de agua del proyecto
				consumo	PIASAA
				humano	
			Microc	uenca del Río	Chanche
40	M6	9229084	795455	Laguna La	Lag. La Rinconada, ubicada
				Rinconada	aproximadamente 20 m aguas abajo de la
					descarga de la Lag. Rinconada.
41	M7	9228775	796752	Quebrada	Descarga de Lag. Dos Colores, Ubicada a
				Dos	200 m aproximadamente de la descarga
				Colores	de la Lag. Dos Colores.
42	M8	9228080	797469	Laguna	Ubicada en el vertedero antiguo a 60 m
				Milpo/Que	aguas abajo de la descarga de la Laguna
				brada	Milpo.
				Milpo	
43	M13	9229116	797673	Manantial	Manantial en Santa Rosa de Milpo, en
					ladera este del Cerro Hilorico.
					Muestreado en la tubería de captación de
					la propiedad de la familia Casahuaman
					Salazar.
44	M14	9229220	797630	Manantial	Manantial en Santa Rosa de Milpo (En la
					propiedad del Sr. David Casahuamán)

N°	Estación de	Coordena	das de	Cuerpo	Ubicación
	monitoreo	ubicac	ción	de agua	
		Norte	Este		
45	M23	9226503	797569	Quebrada	Qda. Carbón, ubicada aproximadamente a
				Carbón	150 m aguas abajo de la naciente de la
					quebrada
46	M24	9226264	800446	Quebrada	Qda. Milpo, ubicada aproximadamente 20
				Milpo	m aguas abajo de la Minicentral
					Hidroeléctrica ubicada en la parte media
					de la Qda. Milpo.
47	M25	9226132	800245	Quebrada	Qda. Boya, ubicada aproximadamente 20
				Boya	m aguas arriba del puente que se
					encuentra en la vía de acceso al Caserío
					Punre
48	M26	9225672	803593	Río	Río Sendamal, ubicado aproximadamente
				Sendamal	150 m aguas abajo de la confluencia con
					la Qda. Rejo.
49	M26A	9228117	800651	Quebrada	Qda. Quengomayo
				Quengoma	
				yo	
50	M34	9226642	799887	Quebrada	Cueva del Gato
				Cueva del	
				Gato	
51	M35	9227919	798750	Laguna El	Reservorio Mullo
				Mullo	
52	M38	9227413	798365	Quebrada	Qda. Quinuacucho
				Quinuacuc	
				ho	
53	M44	9229145	796201	Laguna	Laguna Dos Colores - Laguna Oeste
				Dos	
				Colores	
54	M45	9229262	796280	Laguna	Laguna Dos Colores - Laguna Este
				Dos	
				Colores	
55	PA02	9229134	797586	Pasivo	Pasivo ambiental
				ambiental	

N°	Estación de	Coordenadas de		Cuerpo	Ubicación
	monitoreo	ubicación		de agua	
	-	Norte	Este		
56	PA03	9225309	799716	Efluente de	Pasivo ambiental (Bocamina El Punre)
				la	
				Bocamina	
				El Punre	
57	PA04	9229161	797437	Pasivo	Pasivo ambiental
				ambiental	
58	P6	9228166	797007	Agua	Piezómetro localizado camino a Lag.
				subterránea	Milpo
59	P12	9228481	796554	Agua	Piezómetro localizado entre Lag. Dos
				subterránea	Colores y Lag. Milpo
60	P25	9228474	798820	Agua	Piezómetro cerca de Santa Rosa de Milpo
				subterránea	
61	S33	9226712	800276	Manantial	Agua para consumo en El Punre
			Microcue	enca del Río C	Chirimayo
62	M15	9230082	796902	Manantial	Manantial en La Chorrera, afloramiento
					de agua ubicado en la ladera norte del
					Cerro Hilorico, dentro de la propiedad de
					la familia Casahuamán Salazar.
63	M27	9230115	796176	Laguna	Ubicada en la orilla norte de la laguna
				Lipiac	Lipiac.
64	M28	9231223	796855	Quebrada	Qda. La Chorrera, ubicada a 10 m del
				La	nuevo mercado.
				Chorrera	
65	M29	9232036	795132	Laguna	Ubicada en la orilla noreste de la laguna
				Alforjacoc	Alforjacocha.
				ha	
66	M30	9230346	798800	Manantial	Manantial en Los Sartenes (en la
					propiedad del Sr. Fracisco Ayala).
67	M31	9230166	798950	Manantial	Manantial en Los Sartenes (en la
					propiedad del Sr. Jesús Quiliche), ubicado
					a 20 m aguas abajo del final de la
					conducción del agua por una manguera.

N°	Estación de	Coordena	ıdas de	Cuerpo	Ubicación
	monitoreo	ubicac	ción	de agua	
	-	Norte	Este		
68	M32	9230366	799452	Manantial	Manantial en Qda. Chorro Blanco,
					ubicado a 500 m aguas abajo de la
					naciente de Qda. Chorro Blanco en
					Cushuro
69	M33	9230632	799083	Manantial	Manantial en Los Sartenes (en la
					propiedad del Sr. Miguel Ayala).
70	PA01	9230117	798330	Efluente	Pasivo ambiental (Botadero Los Sartenes)
				botadero	
				Los	
				Sartenes	
71	P9	9230287	796547	Agua	Piezómetro en Qda. La Chorrera
				subterránea	
72	S27	9229981	797032	Manantial	Agua para consumo directo en La
					Chorrera

Nota. Las coordenadas están en el sistema PSAD 56 Zona 17 Sur. De "Informe de resultados de monitoreo trimestral de calidad de agua setiembre 2011", por MWH, 2011, p.10.

En la Tabla 12, se muestra los detalles de la ubicación y descripción de las 26 estaciones de medición de parámetros de campo del programa trimestral y la ubicación geográfica en la Figura 9.

Tabla 12

Estaciones de medición de parámetros de campo - programa trimestral

Estación de Monitoreo	Coorden	adas de	Cuerpo do oguo	Ubicación
Wollitored	Norte	Este	ut agua	
S9	9227544	795437	Manantial	Manantial S/N (Chamcas)
S10	9227744	794037	Manantial	Manantial El Palo Solo (Gualgayoc)
S11	9227744	793945	Manantial	Manantial S/N (Gualgayoc)
S13	9226234	794551	Manantial	Chamcas, captación de agua para
				consumo doméstico
S14	9226327	794516	Manantial	Chamcas, captación de agua para
	Estación de Monitoreo S9 S10 S11 S13 S14	Estación de Monitoreo Coorden Ubica S9 9227544 S10 9227744 S11 9227744 S13 9226234 S14 9226327	Estación de Monitoreo Coordenadas de Ubicación Norte Este S9 9227544 795437 S10 9227744 794037 S11 9227744 793945 S13 9226234 794551 S14 9226327 794516	Estación de MonitoreoCoordenadas de UbicaciónCuerpo de aguaNorteEsteS99227544S1092277449227744794037S119227744S139226234S149226327S15Manantial

N°	Estación de	Coorden	adas de	Cuerpo	Ubicación
	Monitoreo	Ubica	ción	de agua	
		Norte	Este	-	
6	S15	9226378	794597	Manantial	Chamcas, captación de agua para
					consumo doméstico
7	S16	9226379	794630	Manantial	Chamcas, captación de agua para
					consumo doméstico
8	S17	9226382	794613	Manantial	Chamcas, captación de agua para
					consumo doméstico
9	S18	9227418	794129	Manantial	Manantial La Cama de los Buitres
					(Gualgayoc)
10	S19	9227506	793785	Manantial	Manantial La Masma (Gualgayoc)
11	S20A	9225136	793377	Manantial	Manantial en Chamcas (en la propiedad
					de la Sra. Margarita Chavez)
12	S20B	9225249	793604	Manantial	Manantial en Chamcas (en la propiedad
					del Sr. Genaro Ocas)
13	S21A	9224996	794576	Manantial	Manantial S/N (Chamcas)
14	S21B	9224987	794678	Manantial	Manantial en Chamcas (en la propiedad
					de la Sra. Maria Lucano)
15	S21C	9225053	794900	Manantial	Manantial en Chamcas (en la propiedad
					del Sr. Emeregildo)
16	S21D	9225100	794883	Manantial	Manantial en Chamcas (en la propiedad
					del Sr. Emeregildo)
17	S21E	9225137	795026	Manantial	Manantial en Chamcas (en la propiedad
					del Sr. Alcillades Cabrera)
18	S22A	9227892	793604	Manantial	Manantial S/N (Yerba Buena Alta), solo
					parámetros de campo
19	S22B	9227508	793323	Manantial	Manantial S/N (Yerba Buena Alta), solo
					parámetros de campo
20	S30B	9225719	796755	Manantial	Sogorón Alto, captación de agua para
					consumo doméstico
21	S30C	9225484	796751	Manantial	Sogorón Alto, captación de agua para
					consumo doméstico
22	S30D	9225432	796636	Manantial	Sogorón Alto, captación de agua para
					consumo doméstico

N°	Estación de Monitoreo	Coorden Ubica	adas de ción	Cuerpo de agua	Ubicación
		Norte	Este	-	
23	S32B	9223762	794804	Manantial	Rodacocha, captación de agua para consumo doméstico
24	\$32C	9223689	794750	Manantial	Rodacocha, captación de agua para consumo doméstico
25	S34A	9225144	795570	Manantial	El Pedregal, captación de agua para riego
26	S34B	9224851	795123	Manantial	El Pedregal, captación de agua para consumo doméstico.

Nota. Las coordenadas están en el sistema PSAD 56 Zona 17 Sur. De "Informe de resultados de monitoreo mensual de calidad de agua mayo 2011", por MWH, 2011, p.14-16.

Estaciones de monitoreo de calidad de agua - programa trimestral

Nota. Se muestra las estaciones de monitoreo de calidad de agua trimestral en el sistema proyección WGS 84 y Zona 17 Sur. Adaptado del informe de resultados del monitoreo mensual de calidad de agua setiembre 2011, por MWH, 2011

Parámetros a analizar. El plan de monitoreo incluyó la relación de parámetros teniendo en cuenta tipo de cuerpo de agua a muestrear y sobre todo la frecuencia del monitoreo. Los parámetros considerados fueron fisicoquímicos, inorgánicos, microbiológicos, metales (elementos trazas – ICP), compuestos orgánicos volátiles (COVs), plaguicidas y otros.

Para el programa mensual se consideró los parámetros de la Categoría 3 y 4 y para el programa trimestral se consideró la Categoría 1 A2; todas las categorías mencionadas son del ECAs para agua y la clasificación de cuerpos de agua superficial y marino-costero de la Resolución Jefatural N° 202-2010-ANA.

En la Tabla 13, se muestra los parámetros a analizar teniendo en cuenta el programa (mensual o trimestral) y la categoría del ECAs para agua.

Tabla 13

Parámetros	para	analiza	lr.

Parámetro	Mensual y trimestral	Trimestral
	(ECA Agua Cat. 3 y	(agua para consumo
	4)	humano
		ECA Agua – Cat. 1 A2)
Parámetros fisicoquímicos		
Alcalinidad total	Х	Х
Bicarbonatos	Х	Х
Carbonatos	Х	Х
Color verdadero		Х
Dureza total	Х	Х
Sólido total disuelto (STD)	Х	Х
Sólido total suspendido (STS)	Х	Х
Parámetros inorgánicos		
Cianuro total		Х
Cianuro libre	Х	Х
Cianuro WAD	Х	Х
Bromuro	Х	Х
Cloruros	Х	Х
Fluoruros	Х	Х

Parámetro	Mensual y trimestral	Trimestral
	(ECA Agua Cat. 3 y	(agua para consumo
	4)	humano
		ECA Agua – Cat. 1 A2)
Nitratos	Х	Х
Nitritos	Х	Х
Sulfatos	Х	Х
Fosfatos totales (fosforo reactivo disuelto)	Х	Х
Fósforo total		Х
Nitrógeno amoniacal	Х	Х
Nitrógeno total	Х	
Sulfuros	Х	Х
Sulfuros de hidrógeno (H ₂ S indisociable)	Х	Х
Parámetros orgánicos		
Aceites y Grasas	Х	Х
Demanda química de oxígeno (DQO)	Х	Х
Demanda bioquímica de oxígeno (DBO5)	Х	Х
Compuestos fenólicos	Х	Х
Detergentes (SAAM)	Х	Х
Microbiológico		
Coliformes totales	Х	Х
Coliformes fecales	Х	Х
Giardia Duodenallis		Х
Enterococos		Х
Escherichia coli		Х
Formas parasitarias (parásitos y protozoarios)		Х
Huevos de helmintos		Х
Heterótrofos (Bacterias heterotróficas)		Х
Samonella sp.		Х
Vibrio cholerae		Х
Metales y elementos trazas - ICP		
Aluminio	Х	Х
Antimonio	Х	Х
Arsénico	Х	Х
Bario	Х	Х
Berilio	Х	Х

Parámetro	Mensual y trimestral	Trimestral
	(ECA Agua Cat. 3 y	(agua para consumo
	4)	humano
		ECA Agua – Cat. 1 A2)
Bismuto	Х	Х
Boro	Х	Х
Cadmio	Х	Х
Calcio	Х	Х
Cobalto	Х	Х
Cobre	Х	Х
Cromo	Х	Х
Estaño	Х	Х
Estroncio	Х	Х
Fósforo	Х	Х
Hierro	Х	Х
Litio	Х	Х
Magnesio	Х	Х
Manganeso	Х	Х
Molibdeno	Х	Х
Níquel	Х	Х
Plata	Х	Х
Plomo	Х	Х
Potasio	Х	Х
Selenio	Х	Х
Silicio	Х	Х
Sodio	Х	Х
Talio	Х	Х
Uranio	Х	Х
Titanio	Х	Х
Vanadio	Х	Х
Zinc	Х	Х
Mercurio	Х	Х
Cromo VI	Х	Х
Compuestos orgánicos volátiles (COVs)		
1,1,1-Tricloroetano - 71-55-6		Х
1,1-Dicloroetano -75-35-4		Х

Parámetro	Mensual y trimestral	Trimestral
	(ECA Agua Cat. 3 y	(agua para consumo
	4)	humano
		ECA Agua – Cat. 1 A2)
1.2-Dicloroetano -107-06-2		Х
1,2-Diclorobenceno -95-50-1		Х
Hexaclorobutadieno -87-68-3		Х
Tetracloroetano -127-18-4		Х
Tetracloruro de carbono -56-23-5		Х
Tricloroeteno -79-01-6		Х
Trihalometanos		
Trihalometano total		Х
BETX		
Benceno -71-43-2		Х
Etilbenceno -100-41-4		Х
Tolueno -108-88-3		Х
Xilenos -1330-20-7		Х
Hidrocarburos aromáticos		
Benzo (a) pireno -50-32-8	Х	Х
Pentaclorofenol (PCP)	Х	Х
Triclorobencenos (totales)	Х	Х
Hidrocarburos totales de petróleo (HTTP)		Х
Policloruros bifenilos totales (PCBs) ^a	Х	Х
PLAGUICIDAS		
Organofosforados		
Malatión		Х
Metamidofós (restringido)		Х
Paraquat (restringido)		Х
Paratión		Х
Organoclorados (COP) ^b		
Aldrín -309-00-2		Х
Clordano		Х
Clordano (57-74-9)		Х
DDT		Х
Dieldrín -60-57-1		Х
Dieldrín -72-20-8		Х

Parámetro	Mensual y trimestral	Trimestral
	(ECA Agua Cat. 3 y	(agua para consumo
	4)	humano
		ECA Agua – Cat. 1 A2)
Endosulfán		Х
Endrín -72-20-8		Х
Endrín		Х
Heptacloro -76-44-8		Х
Heptacloriepóxido		Х
Heptacloro epóxido 1024-57-3		Х
Lindano		Х
Carbamato		
Aldicarb (restringido) ^a		Х
Otros		
Asbesto		Х
Clorofila A	Х	Х

Nota. Relación de parámetros analizados por categoría según ECA agua. Adaptado del *D.S N° 002-2008-MINAM*, aprobado por el MINAM, 2008.

^a No hay laboratorio en Perú que analice este parámetro

^b Contaminantes orgánicos persistentes

En la Tabla 14, se detalla la categoría asignada a los cuerpos de agua a monitorear de cada estación para el plan de monitoreo del programa trimestral, teniendo como lineamientos la categoría del ECAs para agua.

Tabla 14

Parámetros requeridos por tipo de cuerpos de agua

N°	Estación de	Tipo de cuerpo de	Parámetros a analizar
	monitoreo	agua	
1	P6	Agua subterránea	Listado categorías 3 y 4
2	P9	Agua subterránea	Listado categorías 3 y 4
3	P12	Agua subterránea	Listado categorías 3 y 4
4	P25	Agua subterránea	Listado categorías 3 y 4
5	P7	Agua subterránea	Listado categorías 3 y 4
6	P11	Agua subterránea	Listado categorías 3 y 4
7	M46	Agua superficial	Listado categorías 3 y 4

N°	Estación de Tipo de cuerpo de		Parámetros a analizar
	monitoreo	agua	
8	M47	Agua superficial	Listado categorías 3 y 4
9	S23	Manantiales	Listado categoría 1 a2
10	M18	Agua superficial	Listado categorías 3 y 4
11	M19	Agua superficial	Listado categorías 3 y 4
12	M20	Agua superficial	Listado categorías 3 y 4
13	S24	Manantiales	Listado categoría 1 a2
14	S25	Manantiales	Listado categoría 1 a2
15	S26	Manantiales	Listado categoría 1 a2
16	S22	Manantiales	Listado categoría 1 a2
17	M16	Agua superficial	Listado categorías 3 y 4
18	M17	Agua superficial	Listado categorías 3 y 4
19	S12	Manantiales	Listado categoría 1 a2
20	M37	Agua superficial	Listado categorías 3 y 4
21	M48	Agua superficial	Listado categorías 3 y 4
22	M1	Agua superficial	Listado categorías 3 y 4
23	M2	Agua superficial	Listado categorías 3 y 4
24	M4	Agua superficial	Listado categorías 3 y 4
25	M5	Agua superficial	Listado categorías 3 y 4
26	P1A1	Manantiales	Listado categoría 1 a2
27	S1	Manantiales	Listado categorías 3 y 4
28	S6	Manantiales	Listado categorías 3 y 4
29	M9B	Manantiales	Listado categoría 1 a2
30	S7	Manantiales	Listado categorías 3 y 4
31	S8	Manantiales	Listado categorías 3 y 4
32	S2	Manantiales	Listado categorías 3 y 4
33	S3	Manantiales	Listado categorías 3 y 4
34	S4	Manantiales	Listado categorías 3 y 4
35	S5	Manantiales	Listado categorías 3 y 4
36	M9C	Manantiales	Listado categoría 1 a2
37	S34	Manantiales	Listado categoría 1 a2
38	M22	Agua superficial	Listado categorías 3 y 4
39	M21B	Agua superficial	Listado categorías 3 y 4
40	M21	Agua superficial	Listado categorías 3 y 4
41	S32A	Manantiales	Listado categoría 1 a2

N°	Estación de	Tipo de cuerpo de	Parámetros a analizar
	monitoreo	agua	
42	M43	Agua superficial	Listado categorías 3 y 4
43	S30A	Manantiales	Listado categoría 1 a2
44	M27	Agua superficial	Listado categorías 3 y 4
45	M28	Agua superficial	Listado categorías 3 y 4
46	M29	Agua superficial	Listado categorías 3 y 4
47	M15	Manantiales	Listado categorías 3 y 4
48	S27	Manantiales	Listado categoría 1 a2
49	M30	Manantiales	Listado categorías 3 y 4
50	M31	Manantiales	Listado categorías 3 y 4
51	M32	Manantiales	Listado categorías 3 y 4
52	M33	Manantiales	Listado categorías 3 y 4
53	PA01	Pasivos ambientales	Listado categorías 3 y 4
54	PA02	Pasivos ambientales	Listado categorías 3 y 4
55	PA04	Pasivos ambientales	Listado categorías 3 y 4
56	M13	Manantiales	Listado categorías 3 y 4
57	M14	Manantiales	Listado categorías 3 y 4
58	M23	Agua superficial	Listado categorías 3 y 4
59	M24	Agua superficial	Listado categorías 3 y 4
60	M25	Agua superficial	Listado categorías 3 y 4
61	PA03	Pasivos ambientales	Listado categorías 3 y 4
62	M6	Agua superficial	Listado categorías 3 y 4
63	M7	Agua superficial	Listado categorías 3 y 4
64	M8	Agua superficial	Listado categorías 3 y 4
65	M44	Agua superficial	Listado categorías 3 y 4
66	M45	Agua superficial	Listado categorías 3 y 4
67	M36	Agua de campamento	Listado categoría 1 a2
68	M38	Agua superficial	Listado categorías 3 y 4
69	M34	Agua superficial	Listado categorías 3 y 4
70	S33	Manantiales	Listado categoría 1 a2
71	M26	Agua superficial	Listado categorías 3 y 4
72	M35	Agua superficial	Listado categorías 3 y 4
73	M26A	Agua superficial	Listado categorías 3 y 4

Nota. Se muestra todas las estaciones de monitoreo de los cuerpos de agua del plan de monitoreo. De Resolución Jefatural N° 202-2010-ANA.

2.2.4 Metodología de trabajo

En la metodología de trabajo se describe los lineamientos generales que se consideró para el plan de monitoreo de calidad de agua como la ejecución de las actividades de campo, el manejo de muestras, la documentación, análisis de laboratorio y evaluación de resultados analíticos.

Cabe resaltar que los procedimientos realizados cumplieron con los estándares, lineamientos y guías peruanas del Ministerio de Agricultura (MINAGRI), DIGESA y MEM, así como; con las guías de instituciones internacionales (USEPA, ASTM, etc.).

2.2.4.1 Procedimientos de monitoreo en campo. Los procedimientos de monitoreo que se siguieron en campo fueron calibración de equipos, medición de parámetros de campo, y toma y preservación de muestras. Cabe destacar que durante el procedimiento de monitoreo a veces se contó con representantes de la población local, en calidad de veedores, a quienes se les explicó cada uno de los procedimientos realizados.

A continuación, una descripción breve de los procedimientos del monitoreo seguidos en campo en el año 2010.

Calibración de equipos de medición de parámetros de campo

Todos los equipos fueron calibrados anualmente por una empresa autorizada por INDECOPI, dicha empresa entregó una constancia de calibración la cual se adjuntó al informe final de resultados de monitoreo (informe final). Así mismo, los equipos fueron calibrados diariamente en campo antes de iniciar los eventos de monitoreo, para ello se utilizaron las soluciones estándares e instrucciones de cada equipo. Todos los resultados de calibración fueron anotados en la libreta de campo y en el formato de calibración, este último también se adjuntó en el informe final. En la Figura 10, se observa cuando se está explicando al poblador sobre la calibración de los equipos (turbidímetro y multiparámetro).

Calibración de equipos de monitoreo

Nota. Antes de iniciar el monitoreo se calibraron los equipos de muestreo de pH, conductividad, oxígeno disuelto y turbidez.

El área asuntos socioambientales contaba con equipos para la medición de parámetros en campo como el multiparámetro YSI 556 MPS que analizaba el ph, oxígeno disuelto, temperatura del agua y conductividad eléctrica. También se contó con un turbidímetro Hach modelo 2100P o LaMotte 2020, bomba de muestreo eléctrica sumergible (Redi-Flo2) y GPS (ver Figura 11)

Equipos empleados en el trabajo de campo

Nota. Equipos usados para la recolección de datos durante el monitoreos mensuales y trimestrales.

Descontaminación de equipos y materiales de muestreo

Todo los equipos y materiales fueron descontaminados al inicio de cada evento de monitoreo y entre estaciones de muestreo. Este procedimiento se realizó con alconox (detergente biodegradable no fosfatado) para los materiales de uso no exclusivo, sin embargo; para los equipos de medición de parámetros de campo se empleó el agua desionizada.

A continuación, se detalla los pasos que se siguieron para la limpieza y descontaminación de los equipos y materiales:

- se contó con 02 pulverizadores, de colores diferentes para evitar la confusión. Un pulverizador se llenó con agua desionizada y el otro con la mezcla de agua desionizada con alconox.
- cada día de monitoreo, antes de empezar el monitoreo, los materiales de uso no exclusivo (jarra, pulverizador de agua destilada, etc) fueron enjuagados tres veces con agua potable, luego se lavaron con alconox, para finalmente enjuagarlos con agua desionizada o destilada.
- los sensores de los equipos de medición de parámetros de campo fueron enjuagados tres veces con agua desionizada o destilada ante de ser introducidos en el cuerpo de agua para la medición respectiva.
- el equipo de medición de parámetros de campo y materiales de muestreo fueron limpiados con agua destilada o desionizada antes de dejar la estación de muestreo.
- al finalizar el evento de monitoreo todos los equipos y materiales fueron limpiados de acuerdo a la primera viñeta.

Para la descontaminación de los equipos de muestreo, se tuvo en cuenta lo siguiente:

- los medidores portátiles se limpiaron cuidadosamente al final de cada día de monitoreo con una franela o paño sueva y agua con detergente y se enjuagaron con agua destilada o desionizada.
- las aguas de enjuague y con detergente fueron remplazadas con soluciones nuevas entre eventos de muestreo.
- el equipo no exclusivo, fue descontaminado entre las estaciones de monitoreo.

Medición de parámetros

Se midió en cada estación de muestreo la temperatura, el pH, la conductividad específica, el oxígeno disuelto con el multiparámetro YSI. Para la medición de turbidez se usó el Hach 2100 y para determinar el caudal se utilizará el método del flotador.

Primero se midió la turbidez porque al colocar el sensor del multiparámetro puede generar que se levanten sedimentos. Se recolectó una muestra de agua con el frasco propio del equipo, previa descontaminación, luego este frasco se colocó en el equipo y se esperó los resultados para anotarlos en la libreta y formato de campo.

El sensor del multiparámetro, previa descontaminación, se colocó directamente en el cuerpo de agua teniendo cuidado con la corriente, luego se encendió el equipo y se esperó unos segundos que se estabilice los valores para luego anotarlos en la libreta y formato de campo.

Es importante mencionar que los equipos portátiles de medición de parámetros de campo fueron calibrados y descontaminados diariamente, tal como lo indica el numeral anterior.

En la Figura 12, se observa el momento que se está calibrando el multiparámetro antes de iniciar las actividades de monitoreo (en campo).

Figura 12

Nota. Se empleó soluciones de calibración estándar para pH y conductividad.

Equipos, software, cartografía, instrumentos y materiales utilizados

En la Tabla 15, se presenta una breve descripción de las características relevantes de los equipos, instrumentos, cartografía y materiales utilizados en los monitoreos mensuales y trimestrales. Cabe mencionar que las descripciones se basaron de los manuales de los equipos los cuales se adjuntan en el Anexo F.

Tabla 15

Características de materiales, instrumentos y equipos utilizados

N°	Materiales - Equipos	Características			
Equipo					
1	Cámara Panasonic Lumix fotográfica + cargador	De alta resolución y resistente al agua para evitar que se malogren durante le epoca de lluvias intensas			
2	Celular (RPM)	Con bateria de repuesto cargada para mantener la comunicación fluida con personal del campamento y la oficina en Lima			
3	Linterna	Resistente a golpes y al agua.			
Med	lición de Flujo				
4 5 6	Cronómetro Flotadores Wincha	Deportivo y digital Bolas de tecnopor de 2" y 4" Marca Stanley de 8m			
7	calibrados (están en Equipo de Muestreo)	Jarras de 250 ml, 500 ml, 1000 ml y balde de 20 L. Todas transparentes y marcadas las medidas			
Inst	rumentos				
8	Multiparámetro YSI 556 MPS	Resistente, práctico y de fácil lectura. Mide simultáneamente el oxígeno disuelto, pH y conductividad eléctrica			
9	Turbidímetro LaMotte 2020	Resistente, práctico y de selección automática del rango.			
10	GPS	Espacio para el almacenamiento de puntos y ruta diarias de todo el periodo de monitoreo			
Soft	ware				
11	Mapsource	Programa para transferir datos del GPS a la PC			
12	Aquechem	Programa para interpretar datos de calidad de las aguas			
13	EcoWatch TM	Programa para transferir información del 556 a la PC			
14	ArcGIS	Programa de análisis espacial			
15	Oficce	Paquete de programas que contiene word (procesador de texto) y excel (hoja de cálculo)			
Car	tografía				
16	Carta nacional	Cartas Celendin 14-g y San Marcos 15-g a escala 1/ 100 000 del Instituto Geográfico Nacional – IGN, cartas que fueron elaboradas en el año 1996. En el año 2010 algunas cartas fueron actualizadas, pero no las cartas 14g y 15g. En el visor de mapas del			

N°	Materiales - Equipos	Características
		IGN se puede observar el cuadro de empalmes la
		hojas 14g y 15g en formato pdf y jpg
		(https://www.idep.gob.pe/geovisor/VisorDeMapa
Mate	eriales	
17	Frascos para muestreo	Vidrio ambar y plástico de tamaños varios (500 m y 1000 ml) de acuerdo al tipo de parámetro a analizar. HCl, H ₂ SO ₄ , NaOH y HNO3 en ampollas para
18	Preservantes	preservar las muestras según las indicaciones de laboratorio.
19	Guantes	De nitrilo sin talco para manipular las muestras y uso exclusivo en cada estación.
20	Bolsas ziplot	De diferentes tamaños para transportar las muestr en los cooler y evitar derrames o mezcla de las muestras
21	Ice pack	En gel de tamaño mediano que ayudaron a mantener las muestras frias hasta su llegada al laboratorio
22	Agua desionizada (destilada)	En bidón de 5 litros que se usaba diariamente en l dispensadores empleados en la descontaminación de equipos
23	Pulverizador de agua	De 300 ml ideal para el transporte diario de agua desionizada
24	Alconox o detergente equivalente no fosfatado	Detergente equivalente no fosfatado empleado en limpieza diaria de los materiales de muestreo Pulverizador de 300 ml ideal con mezcla de agua
25	Dispensador de alconox	desionizada y alconox. Empleada en la descontaminación diaria de los equipos o material de muestreo
26	Papel toalla	Ecológico para secar los frascos de muestreo ante de ingresarlos al cooler
27	Esponja para lavar	Tamaño grande para lavar diariamente los equipo o materiales de muestreo
28	Caja térmica grande	o coolers de polietileno de 45 litros para transport las muestras
29	Plástico de burbuja	Ideal para envolver los frascos de vidrito y evita que se rompan durante su traslado en campo o hac el laboratorio
Solu	ciones Estándar y de Calibr	ación
30	Solución estándar ph	Para el calibrado del sensor ph del multiparámetr Se empleó las soluciones de 4.0, 7.0 y 10.
31	Solución estándar conductividad	Para el calibrado del sensor conductividad del multiparámetro. Se empleó las soluciones de 44' uS/cm y 1413 uS/cm
32	Solución estándar turbidez	Para el calibrado del turbidímetro se empleó soluciones de 1 NTU, 10 NTU y 100 NTU propio del equipo
Forn	nularios	··· · · · · · · · · ·
33	Libreta de campo	Libre liviano y para escribir en la lluvia
34	Plano de ubicación de estaciones	02 juegos de planos enmicados en formato A3
35	Formato de recolección de	Un juego de formatos trasladados en una mica par evitar su deterioro

N°	Materiales - Equipos	Características			
36	Formato de calibración en	Un juego de formatos trasladados en una mica para			
50	campo	evitar su deterioro			
37	Kit de embalaje	Contiene el sello de seguridad y cinta de embalaje			
38	Etiqueta	Adherentes y plastificadas proporcionadas por el laboratorio para marcar cada frasco de muestreo			
39	Cadena de custodia	Documento proporcionado por el laboratorio por cada cooler enviado			
40	Plan de Monitoreo de Agua	Documento aprobado por el cliente			
41	Manuales de equipos	Copia de los manuales de cada equipo llevado a campo			
Log	ístico	L.			
42	Cargador de Pilas AA	Se empleó pilas recargables para las linternas, cámara y equipos de campo			
43	Plumones	Plumos delgados y gruesos indelebles de diferente color para marcar los frascos o llenado de etiquetas			
Rec	olección de residuos				
44	Recipientes para buffer	Recipientes herméticos de plástico para los residuos de las soluciones de calibración			
45	Bolsas negras	Para recolectar los desechos propios del muestreo			
Personal					
46	Capota (Impermeable)	Capa impermeable con capucha y color amarillo para las epocas de lluvia en la zona de trabajo			
47	Traje de pesca	Con botas para facilitar el ingreso a quebradas de bajo caudal			
48	Mochila	Impermeable con varios compartimientos para el traslado de los equipos y materiales de muestreo			
49	Bloqueador solar	Evita de que los rayos ultravioletas lleguen a la piel causando irritación			
50	Chaleco	Con el logo de la consultora para identificarse con la comunidad			

Nota. Información de los manuales de los equipos.

Precisión de los equipos utilizados

Como información adicional se muestra a continuación en la Tabla 16, el detalle de los equipos utilizados y su respectiva precisión. En el Anexo G, se adjunta los reportes de los laboratorios.

Tabla 16

Detalle de la precisión de equipos utilizados

Lugar	Equipo	Parámetro	Precisión
Campo	GPS		3,65 m (+/-
(in situ)			12 ft)
	Multiparámetro	ph	± 0.2 units
	YSI 556 MPS	Oxígeno disuelto	± 2% de la lectura ó ±2% saturación
Lugar	Equipo	Parámetro	Precisión
-------------	-------------------	-----------------------	--------------------
			de aire ó
			±0.2 mg/L
		T 11	0.1500
		Temperatura del	0.15°C
		agua Conductividad	0 5% de la
		eléctrica	0.370 de la
		electrica	0.001
			mS/cm
	Redi-Flo2	Medición de flujo	Centésima
			parte de un
			pie/100'
	Turbidímetro Hach	Turbidez	± 2 % de la
	2100P		lectura más
			la luz
			difusa de 0
			a 1000 ENU
	LaMotte 2020	Turbidez	+2%
Laboratorio	Laboratorio	Metales disueltos	80 - 120
Lucciuciic	CorpLab		(% R)
	- F	Metales disueltos	80 - 120
			(% R)
		Demanda químia de	85 - 115
		oxígeno	(% R)
		Detergentes aniones	85 - 115
		Culfata	(% K)
		Sunato	(% R)
		Nitrógeno amoniacal	(70 K) 85 - 115
			(% R)
		Sólidos totales	85 - 115
		suspendidos	(% R)
		Sólidos totales	
		disueltos	
		Aceites y grasas	85 - 115
		D 1	(% K)
		Fenoles	83 - 113
		Bromuro	(70 K) 85 - 115
		Diomaro	(% R)
		Cloruros	85 - 115
			(% R)
		Fluoruros	85 - 115
			(% R)
		Fosfatos	85 - 115
		NI:4. 4	(% R)
		Nitratos	85 - 115
		Nitritos	(70 K) 85 - 115
		11111105	(% R)
		Sulfatos	85 - 115
		·	(% R)

Lugar	Equipo	Parámetro	Precisión
		Color	85 - 115
			(% R)
		Dureza total	85 - 115
			(% R)
		Alcalinidad total	85 - 115
			(% R)
		Carbontato	85 - 115
			(% R)
		Bicarbonato	85 - 115
			(% R)
		Cianuro wad	85 - 115
			(% R)

Nota. Los reportes del laboratorio Nkap SRL no incluyó información de precisión de sus métodos de análisis.

Recolección de muestras

Las consideraciones para el muestreo de agua superficial difieren para aguas de movimiento rápido en ríos y quebradas, para aguas de movimiento lento en quebradas o manantiales, y para aguas sin movimiento como las lagunas o embalses. Las técnicas de muestreo de agua que se usaron fue el muestreo directo, o de captación, y el muestreo indirecto, y dependerá de las características del cuerpo de agua muestreada.

Se trató en lo posible de tomar la muestra directamente del cuerpo de agua, antes de tomar las muestras, los frascos fueron enjuagados tres veces con agua a muestrear, a excepción de las muestras microbiológicas y de aceites y grasas, y alguna otra que indicó el laboratorio.

Para la muestra que se tomó directamente y para las muestras que se filtraron, se usó un recipiente de recolección para recoger la muestra. El recipiente de recolección, se enjuagó como mínimo tres veces con el agua de la muestra, antes de recoger la muestra. Para el caso de las muestras que se filtradas, éstas fueron transferidas a través del aparato de filtración, al frasco respectivo. Los procedimientos para el filtrado de muestras se describen más adelante.

Cabe mencionar que en el año 2010 la empresa Lumina Copper SAC inició la ampliación del área de exploración dentro de sus concesiones, y ante ello decidió determinar las condiciones de los cuerpos de agua superficial y subterránea para controlar los efectos de las actividades propias de la exploración. De esta manera la empresa contó con información

que demostró que las medidas de manejo y los programas de monitoreo (mensual y trimestral) cumplieron con los estándares de calidad de agua y límites máximos permisibles.

En la Figura 13, se puede observar el momento en que se está muestreando directamente del cuerpo de agua.

Figura 13

Muestreo por el método directo

Nota. Realizando el muestreo por el método directo en la Laguna Dos Colores.

Cuando los cursos de agua eran pocos profundos para muestreó directamente (frasco o recipiente), es decir; se excavó una pequeña depresión en la quebrada para formar una poza lo suficientemente profunda para recolectar la muestra. Se esperó que se estabilice la poza y cualquier sedimento o turbidez generada al construir la poza antes de tomar la muestra.

En aguas corrientes, sólo se recolectó el agua de los cursos de agua que estuvieron fluyendo. Las aguas empozadas o estancadas no son representativas del flujo de agua superficial y, por lo tanto, no se muestrearon. Si no existe flujo, dichas observaciones se registraron en el libro de campo y en las hojas de datos de campo. Se tuvo cuidado de no alterar el lecho del curso de agua, ni introducir sedimentos en la columna de agua, durante la recolección de muestras.

A continuación, se muestra en la Tabla 17 el método de muestreo empleado en cada cuerpo de agua que se ubicó en el área del proyecto El Galeno.

Tabla 17

N°	Método de Muestreo	Cuerpo de Agua
1	Directo	Qda. Chamcas
		Qda. Kerosene
		Lag. La Rinconada
		Descarga de Lag. Dos colores
		Lag. Milpo
		Qda. Hierbabuena
		Lag. Yanacocha
		Qda. Milpo
		Cueva del Gato
		Qda. Chaquicocha
		Qda. Pilucnioc
		Agua potable de campamento
2	Indirecto	Guagayoc, tanque de agua para consumo doméstico
		San Juan de Yerba Buena, agua para consumo doméstico
		Santa Rosa de Yerba Buena, agua para consumo
		Toldopata, tanque de agua para consumo doméstico
		La Chorrera, manantial de agua para consumo doméstico
		Chamcas, agua para consumo doméstico - Tanque #1
		Reservorio Mullo
		Caja de reunión de agua del Proyecto PIASAA

Método de muestreo empleado en cuerpos de agua

Nota. Cuerpos de agua dentro de las concesiones El Galeno. De "Informe de resultados de monitoreo mensual de calidad de agua mayo 2011", por MWH, 2011, p.10-11.

Asimismo, se tuvo en cuenta todos los cuidados necesarios para evitar la contaminación de la muestra, tales como el uso de guantes y la manipulación adecuada de los frascos, participando sólo el personal de muestreo, así como; las indicaciones de muestreo del laboratorio.

Después de la recolección de muestras, las muestras se colocaron en una bolsa plástica (tipo ziploc) para luego conservarlas en una caja térmica con hielo (cooler). Cabe mencionar que las observaciones como identificación de la estación de monitoreo, hora de muestreo, apariencia y olor de la muestra, tiempo total en el lugar de muestreo, y otras condiciones no usuales o relevantes durante el muestreo; fueron registradas en la libreta de campo y luego se pasaron a la hoja de datos de agua superficial, hoja que se adjuntó en el informe del monitoreo.

Filtrado de muestras

Las muestras de agua recolectadas para análisis de aniones, cationes y rastros de elementos disueltos, se filtraron en campo. Si las condiciones del campo no fueron prácticas se tomó un pequeño lapso de tiempo entre la recolección y el filtrado.

El filtrado de las muestras se realizó usando una bomba peristáltica y filtros descartables de 0.45 micrones. Los procedimientos específicos para el filtrado de campo se describen a continuación:

- se descontaminó el recipiente de transferencia de vidrio o acero inoxidable, siguiendo los procedimientos de descontaminación indicados en el ítem: descontaminación del equipo y materiales de muestreo.
- se enjuagó el recipiente de transferencia como mínimo de tres veces con el agua de la muestra y luego se llenó con la muestra.
- luego se instaló el equipo de bombeo (bomba peristáltica). Se enjuagó el extremo del tubo que será colocado en el recipiente de transferencia, con agua de la muestra.
 Después de enjuagarlo, se colocó el tubo en el recipiente de transferencia.
- se colocó un filtro descartable nuevo en uno de los extremos del tubo de silicona. Se usó filtros y tubos nuevos para cada muestra individual. En el caso de las muestras duplicadas, se usó el mismo filtro para ambas muestras.
- se hizo pasar un mínimo de 250 ml de agua de la muestra a través del filtro, antes de captar la muestra.

- después de enjuagar el filtro, se procedió a llenar los frascos apropiados con la muestra.
 El agua filtrada se hizo pasar directamente al frasco para la muestra, desde el punto de salida del filtro.
- se indicó en la etiqueta de la muestra y el formulario de cadena de custodia, que se realizó el filtrado en el campo.
- el filtro usado y el tubo de la bomba fueron retirados del equipo y desechados.

Preservación de muestras

La preservación de muestras tiene como finalidad minimizar los cambios químicos que pudieran ocurrir en las muestras durante el almacenaje y tránsito de las mismas hacia el laboratorio. La preservación de las muestras se realizó inmediatamente después de recolectar las muestras, con los preservantes provistos en ampollas por el laboratorio, y de acuerdo a lo requerido por cada parámetro, tal como las instrucciones del laboratorio.

Conservación de muestras

Las muestras después de ser recolectadas o preservadas, fueron de inmediato almacenadas en cajas térmicas con hielo. Las muestras se mantuvieron a 4 °C desde que su recolección hasta su recepción por el laboratorio para su análisis respectivo.

Medición del flujo del agua superficial

Las mediciones de flujos se realizaron en los tramos de los cursos de agua, donde el flujo fue uniforme y estable, y donde la morfología del curso de agua fue lo más uniforme posible.

Las muestras de agua superficial para análisis de laboratorio siempre se recolectaron antes de medir el flujo, para evitar que las actividades de medición del flujo contaminen la muestra química. Todas las mediciones de flujo fueron documentadas con solidez, para asegurar que los procedimientos de medición del flujo sean posibles de verificar. El método en particular que se usó, dependió del tipo de quebrada, canal y flujo de agua al momento de hacer la medición.

- para cursos de agua con flujos mínimos pero continuos, con anchos menores a 15 cm y la velocidad permitió la canalización, se usó el método volumétrico, con un balde calibrado.
- para la medición de flujos menores, en quebradas con anchos mayores a 15 cm, y con flujos entre 0.00016 y 0.0613 m³/s y si las velocidades lo permitieron, se usó el equipo de medición de flujo del tipo "cutthroat flume" o el medidor de corriente (correntómetro) del tipo pigmeo.
- para la medición de flujos en cursos de agua de anchos mayores a 1 m y/o con flujos significativos, se realizó una medición directa del flujo, usando un correntómetro de tipo Price AA. Se calculó el flujo mediante el método área por velocidad.
- para la medición de flujos en cursos de agua de anchos mayores a 1 m y/o con flujos significativos, donde no fue posible usar el correntómetro se usó flotadores y se calculó el flujo mediante el método área por velocidad.

2.2.4.2 Manejo de muestras y documentación. En el presente ítem se muestra los procedimientos usados para el manejo de muestras, siendo la documentación de campo y la cadena de custodia. El uso de la documentación y procedimientos de cadena de custodia adecuados asegura la idoneidad de los métodos de recolección de muestras y que su manejo pueda ser evaluado.

Manejo de muestras

A continuación, se detallan brevemente los criterios y procedimientos que fueron seguidos para el manejo de muestras.

Identificación de la muestra

Cada muestra recibió un código único de identificación. Este código indicó la fecha del muestreo y la identificación de la estación monitoreada (en cualquier orden) y, si es pertinente, la indicación de que es una muestra de control de calidad o usando una codificación que no sea correlativa a las estaciones a muestrear.

Para evitar confusiones entre muestras primarias y muestras de control de calidad, las muestras de AC/QC fueron identificadas con los códigos M10 (duplicada), M11 (blanco de campo) y M12 (blanco de enjuague de equipo). Por ejemplo: dmmaa-estación identificación número.

- **210410-M8** representa a una muestra tomada en la estación de monitoreo M8, tomada el 21 de abril del 2010.
- 210410-M11 representa una muestra de control de calidad (blanco de campo), tomada el
 21 de abril del 2010. La estación en la que fue tomada se registró en la libreta
 de campo y en el formato de recolección de muestra.

Cuando hubo más de una muestra de control de calidad se añadió la numeración correlativa (a, b, etc.) al costado del nombre de la muestra, obteniendo lo siguiente:

210410-M8b representa a la segunda muestra de control de calidad (blanco de campo), tomada el 21 de abril del 2010. La estación en la que fue tomada se registró en la libreta de campo y en el formato de recolección de muestra.

<u>Recipientes de muestras</u>

Todos los frascos para muestras fueron provistos por el laboratorio. Éstos fueron etiquetados y codificados al momento de la toma de muestra, indicando el tipo de muestra, la matriz de la muestra que se recogió, así como; la fecha y hora exacta de la toma de muestra. Los frascos para pruebas de laboratorio se llenaron uno por uno en la estación de monitoreo, se aseguró la tapa del recipiente y cualquier exceso de agua se limpió del exterior.

Tiempo de retención de las muestras

Inmediatamente después de ser recolectada las muestras, éstas fueron colocadas en cajas térmicas con hielo para mantenerlos a 4 °C aproximadamente durante el despacho y entrega al laboratorio, manteniendo los tiempos de retención recomendados por el laboratorio de acuerdo al parámetro a analizar y preservación realizada. La mayoría de las muestras fueron

despachadas al laboratorio analítico en cajas térmicas con hielo, dentro de las 48 horas de su recolección.

Preparación y despacho de las muestras

Las muestras fueron colocadas en bolsas plásticas de almacenaje y en posición recta dentro de la caja térmica para evitar que se derramen. Las cajas térmicas se sellaron con cinta de embalaje y en la parte externa se colocó los sellos de seguridad garantizando que la caja térmica llegó al laboratorio sin ser abierta.

Documentación

La documentación registró los procedimientos realizados, identificó los registros escritos, facilitó el rastreo de las muestras, estandarizó los ingresos de datos e identificó y estableció la autenticidad de las muestras recolectadas. A continuación, descripción de la documentación que se consideró en el plan de monitoreo.

Etiquetado de las muestras

Las muestras recolectadas fueron etiquetadas con material provisto por el laboratorio. Las etiquetas se llenaron con un plumón de tinta indeleble e incluyó la siguiente información:

- identificación de la muestra (código de la estación),
- fecha y hora de muestreo,
- medio muestreado (agua subterránea, agua superficial, agua potable, etc.),
- filtrada o sin filtrar,
- preservante adicionado (si está preservada), y
- parámetros a analizar.

Se cubrieron las etiquetas con cinta de embalaje, para evitar los borrones y las manchas de tinta durante el transporte.

Documentación de campo

Se anotaron todos los datos pertinentes en la libreta de campo y en los formatos de campo en cada estación de monitoreo, al momento de la recolección de muestras. De esta manera se aseguró la información ante la pérdida de uno de los documentos. En el Anexos F Manuales de equipos

Anexos G Reportes de laboratorio

Anexos H se presenta todos los formatos de campo usados durante el proceso de monitoreo mensual o trimestral. Todos los aspectos de la recolección y el manejo de muestras, igual que las observaciones visuales, fueron documentadas en la libreta de campo. En general, la libreta de campo, igual que los registros de datos de campo, incluyó:

- estación monitoreada,
- nombre(s) del muestreador,
- fecha y hora de recolección de la muestra,
- código de identificación de la muestra,
- tipo de muestra (agua superficial, agua subterránea),
- parámetros de campo (ph, conductividad, temperatura, turbidez, oxígeno disuelto),
- manejo de la muestra (incluyendo filtración y preservación, según corresponda),
- cómo se recogió la muestra (directa, indirecta, compuesta, con achicador, etc),
- número y tipo de muestra de AC/CC recolectada,
- condiciones del clima, incluyendo precipitaciones recientes y temperatura del aire, y
- observaciones de campo, incluyendo cualquier condición o actividad no usual en el área.

Cadena de custodia

La cadena de custodia se usó para registrar la custodia y la transferencia de todas las muestras, llenado por el responsable del monitoreo en campo. Una cadena de custodia acompañó a cada recipiente de transporte (cooler) de muestras e incluyó la siguiente información:

- nombre del proyecto,
- nombre y firma del muestreador,
- código de identificación de las muestras,
- fecha y hora de la recolección de las muestras,
- matriz de la muestra,
- número de frascos de muestras,
- análisis solicitados,
- indicación si las muestras están filtradas o sin filtrar,
- indicación si las muestras están preservadas o no, y si están preservadas con qué preservante,
- método de despacho (medio de transporte y número de guía, si es aplicable),
- cualquier instrucción adicional para el laboratorio,

En el Anexo F, se muestra los manuales de equipos; en el Anexo G, se muestra los reportes de laboratorio y en el Anexo H, se muestra el formato de cadena de custodia que se usó en los monitoreos.

2.2.4.3 Metodología Analítica. Las muestras obtenidas fueron analizadas por los laboratorios registrados y autorizados por INDECOPI, incluyendo para las muestras que tuvieron el periodo de retención de 24 horas (microbiológicas y cromo VI). Los parámetros considerados en el plan de monitoreo y sus límites de detección por el método del laboratorio se presentan en la Tabla **18**. La cotización original se adjunta en el Anexos I.

Tabla 18

Parámetro	Método de análisis	Límite de	Norma
		detección	de referencia
Parámetros generales			
STD	Gravimetría	10 mg/l	АРНА 2540-С
STS	Gravimetría	3 mg/l	APHA 2540-D
Alcalinidad total	Volumetría	1mg/l	АРНА 2320-В
Cloruro	Cromatografía Iónica	0.2 mg/l	APHA 4500-Cl-B
Sulfuro	Colorimetría	0.002 mg/l	APHA-AWWA-
			WEF
Sulfato	Cromatografía Iónica	0.2 mg/l	APHA 4110-EPA300
Dureza total	Volumetría	0.5 mg/l	АРНА 2340-С
Aceite y grasas	Gravimetría	5 mg/l	АРНА 5520-В
Bromuro	Cromatografía Iónica	0.01 mg/l	APHA 4110- EPA
			300
Fluoruro	Cromatografía Iónica	0.02 mg/l	APHA 4110- EPA
			300
Nutrientes y parámetros	s bacteriológicos		
Nitrato	Cromatografía iónica	0.005 mg/l	APHA 4110 – EPA
	-	-	300
Nitritos	Cromatografía iónica	0.001 mg/l	APHA 4110 – EPA
			300
DBO ₅	Electrodo de membrana	2 mg/l	APHA 5210-B
	galvánica		
Coliformes Fecales	Fermentación de tubos	1.8 NMP/100 ml	APHA-AWWA-WEF
	múltiples		9221
Coliformes Totales	Fermentación de tubos	1.8 NMP/100 ml	APHA-AWWA-WEF
	múltiples		9221
Cationes y Elementos Ti	razas		
Aluminio	ICP-MS+ICP-OES nivel	0.0050 mg/l	EPA 6020
	ultra-trazas		
Antimonio	ICP-MS+ICP-OES nivel	0.00050mg/l	EPA 6020
	ultra-trazas		

Métodos de análisis y límites de detección

Parámetro	Método de análisis	Límite de	Norma	
		detección	de referencia	
Arsénico	ICP-MS+ICP-OES nivel	0.00050 mg/l	EPA 6020	
	ultra-trazas			
Bario	ICP-MS+ICP-OES nivel	0.00025 mg/l	EPA 6020	
	ultra-trazas			
Berilio	ICP-MS+ICP-OES nivel	0.0025 mg/l	EPA 6020	
	ultra-trazas			
Bismuto	ICP-MS+ICP-OES nivel	0.0025 mg/l	EPA 6020	
	ultra-trazas			
Boro	ICP-MS+ICP-OES nivel	0.050 mg/l	EPA 6020	
	ultra-trazas			
Cadmio	ICP-MS+ICP-OES nivel	0.00025 mg/l	EPA 6020	
	ultra-trazas			
Calcio	ICP-MS+ICP-OES nivel	0.050 mg/l	EPA 6020	
	ultra-trazas			
Cobalto	ICP-MS+ICP-OES nivel	0.00050 mg/l	EPA 6020	
	ultra-trazas			
Cobre	ICP-MS+ICP-OES nivel	0.00050 mg/l	EPA 6020	
	ultra-trazas			
Cromo	ICP-MS+ICP-OES nivel	0.0025 mg/l	EPA 6020	
	ultra-trazas			
Estaño	ICP-MS+ICP-OES nivel	0.00050 mg/l	EPA 6020	
	ultra-trazas			
Estroncio	ICP-MS+ICP-OES nivel	0.00050 mg/l	EPA 6020	
	ultra-trazas			
Fósforo	ICP-MS+ICP-OES nivel	0.3 mg/l	EPA 6010B	
	ultra-trazas			
Hierro	ICP-MS+ICP-OES nivel	0.030 mg/l	EPA 6010B	
	ultra-trazas			
Litio	ICP-MS+ICP-OES nivel	0.0050 mg/l	EPA 6020	
	ultra-trazas			
Magnesio	ICP-MS+ICP-OES nivel	0.10 mg/l	EPA 6020	
	ultra-trazas			
Manganeso	ICP-MS+ICP-OES nivel	0.00025 mg/l	EPA 6020	
	ultra-trazas			

Parámetro	Método de análisis	Límite de	Norma	
		detección	de referencia	
Molibdeno	ICP-MS+ICP-OES nivel	0.00005 mg/l	EPA 6020	
	ultra-trazas			
Níquel	ICP-MS+ICP-OES nivel	0.0025 mg/l	EPA 6020	
	ultra-trazas			
Plata	ICP-MS+ICP-OES nivel	0.00005 mg/l	EPA 6020	
	ultra-trazas			
Plomo	ICP-MS+ICP-OES nivel	0.00025 mg/l	EPA 6020	
	ultra-trazas			
Potasio	ICP-MS+ICP-OES nivel	2.0 mg/l	EPA 6020	
	ultra-trazas			
Selenio	ICP-MS+ICP-OES nivel	0.0050 mg/l	EPA 6010B	
	ultra-trazas			
Sílicio	ICP-MS+ICP-OES nivel	0.05 mg/l	EPA 6010B	
	ultra-trazas			
Sodio	ICP-MS+ICP-OES nivel	2.0 mg/l	EPA 6010B	
	ultra-trazas			
Talio	ICP-MS+ICP-OES nivel	0.00050 mg/l	EPA 6020	
	ultra-trazas			
Uranio	ICP-MS+ICP-OES nivel	0.000050 mg/l	EPA 6020	
	ultra-trazas			
Titanio	ICP-MS+ICP-OES nivel	0.01 mg/l	EPA 6010B	
	ultra-trazas			
Vanadio	ICP-MS+ICP-OES nivel	0.0050 mg/l	EPA 6020	
	ultra-trazas			
Zinc	ICP-MS+ICP-OES nivel	0.0050 mg/l	EPA 6020	
	ultra-trazas			
Mercurio	Absorción atómica con vapor	0.00005 mg/l	АРНА 3112-В	
	frío espectrométrica			

Nota. Parámetros relevantes para el monitoreo trimestral y mensual del proyecto El Galeno.

2.2.4.4 Manejo y validación de datos. El manejo y validación de datos estuvo conformado por documentos o acciones como los reportes de laboratorio, revisión y validación de datos y calificación de datos. Los detalles a continuación.

Reportes de laboratorio

Los laboratorios presentaron reportes analíticos mediante copias físicas y en formato digital. Estos resultados fueron revisados y validados por el líder del monitoreo.

Revisión y validación de datos

Los métodos de revisión y validación incluyeron la verificación de los tiempos de retención de las muestras, calibraciones de los instrumentos, desempeño de los instrumentos, mediciones de precisión y mediciones de exactitud, además:

- se revisaron los resultados de las mediciones de los parámetros de campo para identificar los valores anómalos o sospechosos,
- se revisaron las cadenas de custodia y el informe de resultados del laboratorio para verificar si las muestras fueron analizadas dentro de los tiempos de retención especificados,
- se evaluó la precisión de los datos del laboratorio comparando los resultados de las muestras primarias con las duplicadas. Se calculó los valores de diferencia porcentual relativa (DPR) de las muestras,
- finalmente, todos los datos fueron revisados cuidadosamente en busca de errores de trascripción, discrepancias en los límites de detección (solamente del laboratorio), omisión de datos y valores sospechosos o anómalos, y
- se realizó la evaluación de ac/cc descrita en ítem control de calidad.

Calificación de datos

En base a los resultados de la revisión de datos la cual se describe en ítem, revisión y validación de datos, se realizó la calificación de los datos sospechosos o que se han considerado anómalos. Para esto se usaron calificadores de datos (letras que acompañan al resultado analítico), con lo cual se aseguró que se tengan las consideraciones necesarias para su interpretación y uso.

A continuación, se presentan los calificadores usados:

- Ninguno Ningún calificador indica que el compuesto o analito fue analizado y detectado.
 El valor reportado es el resultado del componente corregido por el laboratorio para el contenido de humedad de una muestra diluida. Los datos son posibles de usar con fines de toma de decisiones.
- J Indica que el compuesto o analito fue analizado y detectado. El valor asociado es estimado, pero los datos son posibles de usar con fines de toma de decisiones.
- R Indica que el compuesto o analito fue analizado, pero, debido a una deficiencia identificada en el control de calidad, se considera que los datos no pueden usarse con fines de toma de decisiones.

2.2.4.5 Aseguramiento y control de calidad (AC/CC). El plan de monitoreo contempló el aseguramiento y control de calidad (AC/CC) garantizando de este modo que los muestreos de campo y los análisis de laboratorio cumplieron los requerimientos establecidos en los lineamientos y guías usadas.

El AC/CC sirvió también para identificar los errores analíticos y la capacidad de los laboratorios de satisfacer los requerimientos de servicio establecidos en el plan de monitoreo, además; permitió asegurar que los resultados obtenidos sean válidos y sin interferencias.

Es importante indicar que las muestras de AC/CC fueron colectadas en una tasa mínima del 10%, o una serie de AC/CC por cada 10 muestras. Es decir, por cada 10 muestras primarias tomadas se tomó una serie de muestras de AC/CC. El AC/CC incluyó:

- muestras duplicadas de campo,
- blancos de campo,
- blancos de enjuague del equipo (una por evento de monitoreo), y
- las muestras de AC/CC fueron llenadas junto con la muestra primaria. Las muestras de AC/CC se recolectaron usando los mismos procedimientos que las muestras primarias.

Las muestras duplicadas, es importante mencionar que son muestras independientes del mismo medio, recolectadas al mismo tiempo, del mismo lugar. Para las muestras alícuotas que requirieron ser filtradas, las muestras primarias y duplicadas usaron el mismo filtro.

Un blanco de campo es una muestra de agua destilada, la cual se introdujo directamente en los frascos para muestras en la estación de muestreo designada como estación de control de calidad, siguiendo los mismos procedimientos utilizados para la muestra primaria.

En cada evento de muestreo se recolectó una muestra del enjuague del equipo. El propósito de esta muestra fue el de revisar los procedimientos de descontaminación de los equipos y materiales usados en el muestreo. El equipo de muestreo fue descontaminado y luego fue enjuagado con agua destilada, por encima y dentro de los equipos de recolección de muestras. Esta agua de enjuague se transfirió a los frascos de muestra apropiadas.

Las muestras duplicadas, blanco de campo y blanco de enjuague de equipo, fueron analizadas por el mismo laboratorio junto con las muestras primarias.

Evaluación de los resultados de las muestras de AC/CC

Los resultados analíticos para las muestras en blanco de campo no fueron mayores al 5% de las concentraciones reportadas para cada parámetro analizado en la muestra primaria. Las concentraciones mayores a este valor en las muestras en blanco, las muestras primarias asociadas fueron calificadas con "J" porque fue probable que éstas hayan sufrido interferencias a través de otros medios y no fueron absolutamente representativas de las características del cuerpo de agua muestreado. Sin embargo, si las concentraciones estuvieran por debajo de diez veces el límite de detección del laboratorio, el método analítico no se consideró lo suficientemente preciso y por lo tanto no se calificó con "J".

Si el valor DPR entre las concentraciones del analito de las muestras relacionadas (primaria y duplicada) fue mayor a 20%, la muestra primaria se calificó también con "J", es decir, el valor relacionado fue probablemente aproximado y no exacto; sin embargo, los datos

fueron usados para realizar interpretaciones o tomar decisiones. No obstante, si las concentraciones reportadas fueron menores a diez veces el límite de detección del laboratorio, el método analítico no fue considerado lo suficientemente preciso para brindar resultados con un DPR de 20% o menos y por lo tanto no se calificó con "J".

En la Tabla 19, se muestra un resumen detallando los componentes del plan de monitoreo empleado en los eventos mensuales y trimestrales para el proyecto El Galeno en el año 2010.

Tabla 19

Componentes	del	plan a	de	monitoreo
-------------	-----	--------	----	-----------

N°	Componentes	Mon	itoreo
		mensual	trimestral
1	Objetivo		
2	Marco normativo		
3	Estaciones de monitoreo		
4	Frecuencia del monitoreo	25 estaciones de muestreo 39 estaciones de control de parámetros de campo	72 estaciones de muestreo 26 estaciones de control de parámetros de campo
5	Matriz	Agua superficial, manantial, agua residual doméstica y efluente	Agua superficial, manantial, agua residual doméstica y efluente
6	Parámetros a analizar	ECA Agua Cat. 3 y 4	ECA Agua Cat. 3 y 4 ECA Agua – Cat. 1 A2
7	Metodología de trabajo		
8	Manejo de documentación		
9	Metodología de análisis		
10	Manejo y validación de datos		
11	Revisión y validación de datos		
12	Calificación de datos		
13	Aseguramiento y control de calidad AC/CC		
14	Evaluación de resultados AC/CC		

Nota. Información del "Informe de resultados de monitoreo mensual de calidad de agua mayo 2011", por MWH, 2011.

2.3 Análisis de la legislación ambiental

El análisis de la legislación ambiental se basó en la comparación de la normativa que existió en el 2010, año en el que se elaboró el plan de monitoreo, con la normativa vigente

(2020, año en que se elaboró el informe). Es decir, se comparó resoluciones aprobadas por las instituciones como el MEM, DIGESA y la ANA, así como; decretos aprobados por el MINAM.

En la Tabla 20, se muestra el detalle de la legislación ambiental que fue comparada. Así mismo, se resalta que en la columna del año 2020 se muestra la legislación que deroga las empleadas en el 2010 además de ser emitidas por los sectores competentes, MINAM y ANA.

Tabla 20

Año 2010 Año 2020 Resolución Directoral Nº 004-94-EM/DGAA Guía de monitoreo de agua para la actividad minero metalúrgicas Resolución Ministerial Nº 011-96-EM/VMM Decreto Supremo Nº 010-2010-MINAM Aprueban límites máximos permisibles Aprueban los niveles máximos permisibles para efluentes líquidos para las actividades mineropara la descarga de efluentes líquidos de metalúrgicas actividades minero-metalúrgicas Resolución Directoral N° Resolución Jefatural Nº 010-2016-ANA Protocolo nacional para el monitoreo de 2254/2007/DIGESA/SA Aprueba protocolo de monitoreo de la calidad la calidad de los recursos hídricos sanitaria de los recursos hídricos superficiales superficiales Decreto Supremo Nº 002-2008-MINAM Decreto Supremo Nº 004-2017-MINAM Aprueban los estándares nacionales de calidad Aprueban estándares de calidad ambiental para agua ambiental (ECA) para agua y establecen disposiciones complementarias Ley N° 29338 Ley de recursos hídricos Resolución Jefatural Nº 202-2010-ANA Resolución Jefatural Nº 056-2018-ANA Aprueba la clasificación de cuerpos de agua Aprueba la clasificación de los cuerpos superficial y marino-costero de agua continentales superficiales

Comparativo de la legislación ambiental – recurso agua

Nota. Normativa del MINEM, MINAM, DIGESA y ANA.

Es importante mencionar que las normas en materia ambiental aparecen en la década de los 90 a raíz de la conferencia de las naciones unidas sobre medio ambiente y desarrollo (Brasil, 1992).

La DIGESA, en su calidad de autoridad sanitaria de los recursos hídricos ejecutó el programa nacional de vigilancia de la calidad de los recursos hídricos desde 1999, elaboró el protocolo de monitoreo de la calidad sanitaria de recursos hídricos superficiales la cual se aprobó mediante Resolución Directoral N° 2254/2007/DIGESA/SA. El protocolo estableció los criterios fundamentales para el desarrollo de los monitoreos considerando las pautas para identificar los parámetros, las estaciones de muestreo, procedimientos de toma de muestras, preservación, conservación, envío de muestras y documentos necesarios. También, contó con el aseguramiento y control de calidad del monitoreo.

Con el transcurrir del tiempo la vigilancia y la fiscalización de la calidad de los recursos hídricos se torna importante para planificar e implementar acciones de prevención, mitigación y control de los impactos negativos. Ante lo mencionado, la ANA en el marco de su competencia (DS N° 006-2010-AG y DS N°001-2010-AG) mediante la dirección de gestión de calidad de los recursos hídricos aprobó el protocolo nacional para el monitoreo de la calidad de los recursos hídricos superficiales mediante la Resolución Jefatural N° 010-2016-ANA.

El protocolo aprobado por el ANA estandarizó los criterios y procedimientos técnicos de los diferentes sectores como MEM, MINAGRI, MINAM, Ministerio de la Producción (PRODUCE) y el Ministerio de Vivienda, Construcción y Saneamiento (MVCS).

La ANA también incluyó dos métodos (euleriano y lagrangiano) para determinar las condiciones hidrográficas y dinámica en agua marino-costeras, además; de la frecuencia de monitoreo para los sectores de industria, pesquería, saneamiento, minería, hidrocarburo y energía.

En la Tabla 21, se muestra el contenido del protocolo de DIGESA (2007) y del ANA (2016) a modo comparativo. Se puede observar que ANA incluye a los cuerpos receptores de vertimiento; donde indica parámetros de control en función de la actividad generadora de las

aguas residuales, frecuencia de monitoreo, toma de muestra y una breve descripción de los cuerpos receptores.

Tabla 21

Comparando protocolos de monitoreos de recursos hídricos

Protocolo de monitoreo de la calidad sanitaria	Protocolo nacional para el monitoreo de la
de los recursos hídricos superficiales"	calidad de los recursos hidricos superficiales"
1. Ubicación de puntos de muestreo y registro	1. Monitoreo de la calidad del cuerpo receptor
de datos de campo	de vertimientos autorizados
1.1. Ubicación de puntos de muestreo	1.1. Ubicación de los puntos de control en
1.1.1. Identificación	el cuerpo receptor de un vertimiento de
1.1.2. Accesibilidad	aguas residuales
1.1.3. Representatividad	1.1.1.En cuerpos de agua lótico
1.2. Medición de caudales	1.1.2.En cuerpos de agua léntico
1.2.1. Método del correntómetro	1.1.3.En cuerpos de agua marino-
1.2.2. Método del flotador	costero
1.2.3. Método usando dispositivos	1.1.4. Identificación de los puntos de
especiales tales como: vertederos y	monitoreo y/o control en el cuerpo
canaletas (parshall, trapezoidal, sin	receptor
cuello, orificio, etc.)	1.2. Frecuencia de monitoreo de la calidad
1.2.4. Método volumétrico.	del cuerpo receptor de un vertimiento
1.3. Registro de datos de campo	de aguas residuales tratadas
2. Frecuencia de monitoreo	1.3. Parámetros de control en función de la
3. Muestreo, preservación, conservación y	actividad generadora de las aguas
envío de las muestras al laboratorio de	residuales
análisis.	1.4. Toma, conservación, preservación y
3.1. Consideraciones generales	análisis de las muestras de agua
3.2. Toma, preservación y conservación de	1.5. Remisión de los reportes de monitoreo
muestras de agua	2. Monitoreo de la calidad de los recursos
3.2.1. Toma de muestras	hídricos superficiales
3.2.2. Medición de parámetros en	2.1. Recursos humanos
campo	2.2. Recursos económicos
3.2.3. Preservación de las muestras de	2.3. Tipos de muestras de agua
agua	2.3.1.Muestra simple o puntual
3.2.4. Identificación de las muestras de	2.3.2.Muestra compuesta
agua	2.3.3.Muestra integrada

3.2.5.	Conservación	у	envío	de	las
m	uestras de agua				

- 4. Aseguramiento y control de calidad
 - 4.1. Fisicoquímicos
 - 4.1.1. Los blancos de equipo
 - 4.1.2. Los blancos de campo
 - 4.1.3. Los blancos viajeros
 - 4.1.4. Las muestras duplicadas
 - 4.2. Microbiológico
 - 4.2.1. Blanco viajero
 - 4.2.2. Duplicados de muestreo

Anexos

- Anexo I Ficha de registro de datos de campo
- Anexo II Requisitos para toma de muestras de

aguas y su manipulación

Anexo III Cadena de custodia

Anexo IV Etiquetas

- 2.4. Planificación del monitoreo
- 2.5. Establecimiento de la red de puntos de monitoreo

2.5.1.Cuenca e intercuenca

2.5.2.Lagos, lagunas y embalses

2.5.3.Mar

- 2.5.4.Codificación del punto de muestreo
- 2.6. Frecuencia de monitoreo
- 2.7. Parámetros recomendados en el monitoreo de la calidad de recursos hídricos superficiales
- 2.8. Preparación de materiales, equipos e indumentaria de protección
- 2.9. Seguridad en el trabajo de campo
- 2.10. Reconocimiento del entorno
- 2.11. Rotulado y etiquetado
- 2.12. Medición de las condiciones
 - hidrográficas en aguas continentales y

marino-costeras

2.12.1. Medición de caudal

2.12.1.1. Método del

correntómetro

- 2.12.1.2. Método del flotador
- 2.12.1.3. Método volumétrico
- 2.12.2. Condiciones hidrográficas y dinámicas en aguas marino-

costeras

- 2.12.2.1. Método euleriano
- 2.12.2.2. Método lagrangiano
- 2.13. Georreferenciación del punto de monitoreo
- 2.14. Medición de los parámetros de campo
- 2.15. Procedimiento para la toma de muestras

2.15.1. Toma de muestras en rio o		
quebradas con bajo caudal		
2.15.2. Toma de muestras en ríos o		
lagos desde la orilla		
2.15.3. Toma de muestra en el mar a		
orilla de playas		
2.15.4. Toma de muestras desde		
puentes		
2.15.5. Toma de muestras usando		
embarcación		
2.15.6. Toma de muestras a diferentes		
profundidades utilizando la botella		
hidrográfica		
2.15.7. Toma de muestras a diferentes		
profundidades utilizando		
manguera		
2.16. Preservación, llenado de la		
cadena de custodia, almacenamiento,		
conservación y transporte de las		
muestras		
2.16.1. Preservación		
2.16.2. Llenado de cadena de custodia		
2.16.3. Almacenamiento, conservación		
y transporte de las muestras		
2.17. Aseguramiento de la calidad del		
muestreo		
2.17.1. Blancos		
2.17.2. Duplicados de campo		
2.18. Actividades postmuestreo		
Anexos		
Anexo I Registro de datos en campo		
Anexo II Etiquetas para muestras de agua		
Anexo III Cadena de custodia		
Anexo IV Registro de identificación del punto		
de monitoreo		
Anexo V Manguera muestreadora		

Anexo	VI	Frecuencia de monitoreo
		establecidas en las normas
		ambientales sectoriales
Anexo	VII	Conservación y preservación de
		muestras de agua en función del
		parámetro evaluado
Anexo	VIII	Glosario de términos

Nota. Índice completo del protocolo vigente durante la elaboración del plan de monitoreo (2010) y el aprobado en el año 2016.

^a Resolución Directoral N° 2254/2007/DIGESA/SA, Protocolo de Monitoreo de la Calidad Sanitaria de los Recursos Hídricos Superficiales.

^b Resolución Jefatural N° 010-2016-ANA Protocolo Nacional para el Monitoreo de la Calidad de los Recursos Hídricos Superficiales.

En la Tabla 22, se muestra el contenido del protocolo nacional para el monitoreo de la calidad de los recursos hídricos superficiales (protocolo) y el plan de monitoreo de calidad de

agua del proyecto El Galeno (plan).

Tabla 22

Contenido del protocolo ANA y plan de monitoreo para LUMINA

Protocolo nacional para el monitoreo de la	Plan de monitoreo de calidad de agua del				
calidad de los recursos hídricos superficiales ^a	proyecto El Galeno - LUMINA				
1. Monitoreo de la calidad del cuerpo receptor	1. Estaciones de monitoreo				
de vertimientos autorizados	2. Parámetros a analizar				
1.1. Ubicación de los puntos de control en el	3. Metodología de trabajo				
cuerpo receptor de un vertimiento de aguas	3.1. Procedimiento de monitoreo en campo				
residuales	3.1.1.Calibración de los equipos de				
1.1.1. En cuerpos de agua lótico	medición de parámetros de campo				
1.1.2. En cuerpos de agua léntico	3.1.2. Descontaminación del equipo y				
1.1.3. En cuerpos de agua marino-costero	materiales de muestreo de agua				
1.1.4. Identificación de los puntos de monitoreo	3.1.3. Medición de parámetros de campo				
y/o control en el cuerpo receptor	3.1.4. Recolección de muestras				
1.2. Frecuencia de monitoreo de la calidad	3.1.5.Filtrado de muestras				
del cuerpo receptor de un vertimiento	3.1.6. Preservación de muestras				
de aguas residuales tratadas	3.1.7. Conservación de muestras				
	3.1.8. Medición de flujo de agua				
	superficial				

- actividad generadora de las aguas residuales
- 1.4. Toma, conservación, preservación y análisis de las muestras de agua
- 1.5. Remisión de los reportes de monitoreo
- Monitoreo de la calidad de los recursos hídricos superficiales
 - 2.1. Recursos humanos
 - 2.2. Recursos económicos
 - 2.3. Tipos de muestras de agua
 - 2.3.1.Muestra simple o puntual
 - 2.3.2. Muestra compuesta
 - 2.3.3.Muestra integrada
 - 2.4. Planificación del monitoreo
 - 2.5. Establecimiento de la red de puntos de monitoreo
 - 2.5.1.Cuenca e intercuenca
 - 2.5.2.Lagos, lagunas y embalses
 - 2.5.3.Mar
 - 2.5.4.Codificación del punto de muestreo
 - 2.6. Frecuencia de monitoreo
 - 2.7. Parámetros recomendados en el monitoreo de la calidad de recursos hídricos superficiales
 - 2.8. Preparación de materiales, equipos e indumentaria de protección
 - 2.9. Seguridad en el trabajo de campo
 - 2.10. Reconocimiento del entorno
 - 2.11. Rotulado y etiquetado
 - 2.12. Medición de las condiciones hidrográficas en aguas continentales y marino-costeras

Plan de monitoreo de calidad de agua del proyecto El Galeno - LUMINA

- 3.2. Manejo de muestra y documentación
 - 3.2.1. Manejo de muestras
 - 3.2.2. Documentación
 - 3.3. Metodología analítica
 - 3.3.1.Contacto con el laboratorio
 - 3.4. Manejo y validación de datos
 - 3.4.1.Reporte de laboratorio
 - 3.4.2. Revisión y validación de datos
 - 3.4.3. Calificación de datos
 - 3.5. Control de calidad
 - 3.5.1.Evaluación de los resultados de las muestras de AC/CC

Protocolo nacional para el monitoreo de la	Plan de monitoreo de calidad de agua del
calidad de los recursos hídricos superficiales ^a	proyecto El Galeno - LUMINA
2.12.1. Medición de caudal	
2.12.1.1. Método del	
correntómetro	
2.12.1.2. Método del flotador	
2.12.1.3. Método volumétrico	
2.12.2. Condiciones hidrográficas y	
dinámicas en aguas marino-	
costeras	
2.12.2.1. Método euleriano	
2.12.2.2. Método lagrangiano	
2.13. Georreferenciación del punto de	
monitoreo	
2.14. Medición de los parámetros de	
campo	
2.15. Procedimiento para la toma de	
muestras	
2.15.1. Toma de muestras en rio o	
quebradas con bajo caudal	
2.15.2. Toma de muestras en ríos o	
lagos desde la orilla	
2.15.3. Toma de muestra en el mar a	
orilla de playas	
2.15.4. Toma de muestras desde	
puentes	
2.15.5. Toma de muestras usando	
embarcación	
2.15.6. Toma de muestras a diferentes	
profundidades utilizando la botella	
hidrográfica	
2.15.7. Toma de muestras a diferentes	
profundidades utilizando	
manguera	
2.16.Preservación, llenado de la	
cadena de custodia, almacenamiento,	

Protocolo nacional para el monitoreo de la	Plan de monitoreo de calidad de agua de			
calidad de los recursos hídricos superficiales ^a	proyecto El Galeno - LUMINA			
conservación y transporte de las				
muestras				
2.16.1. Preservación				
2.16.2. Llenado de cadena de custodia				
2.16.3. Almacenamiento, conservación				
y transporte de las muestras				
2.17. Aseguramiento de la calidad del				
muestreo				
2.17.1. Blancos				
2.17.2. Duplicados de campo				
2.18. Actividades posmuestreo				
Anexos				
Anexo I Registro de datos en campo				
Anexo II Etiquetas para muestras de agua				
Anexo III Cadena de custodia				
Anexo IV Registro de identificación del punto				
de monitoreo				
Anexo V Manguera muestreadora				
Anexo VI Frecuencia de monitoreo establecidas				
en las normas ambientales				
sectoriales				
Anexo VII Conservación y preservación de				
muestras de agua en función del				
parámetro evaluado				
Anexo VIII Glosario de términos				

Nota. El plan de monitoreo de calidad de agua del proyecto El Galeno del año 2010 consideró los ítems de la normativa nacional aprobada en el 2016.

^a Resolución Jefatural Nº 010-2016-ANA Protocolo nacional para el monitoreo de la calidad de los recursos hídricos superficiales.

Otro detalle que se resalta de la Tabla 22, es que el plan de monitoreo cumplió con lo establecido en el protocolo a pesar que este fue aprobado seis años después de haberse elaborado el plan de monitoreo del proyecto El Galeno. Esto se debió a que el protocolo, elaborado por el ANA, contó como referencias a la agencia de protección ambiental (USEPA) misma referencia que se empleó para la elaboración del plan para LUMINA.

Los cuerpos de agua superficiales ubicados en el proyecto El Galeno se clasificaron teniendo en cuenta la normativa aprobada por la ANA considerando su uso y en concordancia con los estándares nacionales de calidad ambiental a fin de mantener el principio de conservación y protección del recurso hídrico.

Teniendo en cuenta la normativa vigente en el año 2010 se empleó la Categoría 1- A2 (aguas que pueden potabilizadas con tratamiento convencional) y Categoría 4 (conservación del ambiente acuático), sin embargo; en el momento que se desarrolló el presente informe la normativa vigente indicó Categoría 3 (riego de vegetales y bebida de animales) para los cuerpos de agua que se ubican en el proyecto El Galeno (ver Tabla 23)

Tabla 23

Clasificación de cuerpos de agua superficial y			Clasificación	de los cuer	pos de agua	
	marino-cos	stero ^a		continentales s	superficiales ^b	
Cuerpo de	Categoría	Clase	Cuenca	Nombre	Categoría	Unidad
agua						hidrográfica
Río Grande	Categoría 1-	Clase 2	Crisnejas	Rio Crisnejas	Categoría 3	Cuenca
	A2					Crisnejas
Río	Categoría 4	Clase	Marañón	Rio Marañón	Categoría 3	Intercuenca
Marañón		Especial				Alto
(ámbito alto						Marañón IV
Marañón)						

Comparando clasificación de cuerpos de agua de la normativa de los años 2010 y 2018

Nota. En la actualidad los cuerpos de agua que se ubican en el proyecto El Galeno son consideradas para bebidas de animales y riego de vegetales.

^a Resolución Jefatural N°202-2010-ANA.

^b Resolución Jefatural.N°056-2018-ANA.

Cabe resaltar que ninguna de las normas aprobadas por el ANA o el MINAM consideró la evaluación de los resultados de las muestras de AC/CC, evaluación que se realizó entre los resultados de las muestras en blanco de campo y duplicadas con los resultados de la muestra primarias. Para ello se calculó los valores de diferencia porcentual relativa (DPR) de las muestras.

Los reportes de monitoreo de calidad de agua del proyecto El Galeno se pueden ubicar

en el sistema de información ambiental regional de Cajamarca (SIAR).

Así mismo, se muestra en la Tabla 24 un resumen de la normativa referentes a calidad

de agua aprobadas hasta la fecha.

Tabla 24

Resumen de las regulaciones de la calidad de agua y efluentes

N°	Norma	Disposición	Caracteristicas
Límites	máximos permisibles -	LMP	
1	RM Nº 011-96- EM/VMM	Niveles máximos permisibles para efluentes líquidos minero- metalúrgicos	No incluyeron a los parámetros como el cadmio, mercurio, cromo
2	DS N° 010-2010- MINAM	Límites máximos permisibles para la descarga de efluentes líquidos de actividades mineras- metalúrgicas	Incluyen los parámetros de campo (caudal, conductividad eléctrica, temperatura del efluente y turbiedad). El cianuro total remplaza al cianuro libre y cianuro wad.
3	DS N°003-2010- MINAM	Límites máximos permisibles para los efluentes de plantas de tratamiento de agua residual doméstica o municipal	Incluye siete elementos: aceites y grasas, Demanda bioquímica de oxígeno (DBO) y Demanda química de oxígeno (DQO), ph, solidos totales en suspensión y temperatura
Estánda	res de calidad de agua	- ECA	
4	DS Nº 002-2008- MINAM	Estándares nacionales de calidad ambiental para agua (Julio, 2008)	Establece los niveles de concentración de sustancias (parámetros físicos, químicos y biológicos) teniendo en cuenta el uso de los cuerpos de agua. Además, los agrupa en 4 categorías principales como son: poblacional y recreacional, marino costeras, riego de vegetales y bebida de animales y finalmente, conservación del ambiente acuático
5	DS Nº 015-2015- MINAM	Modifican los estándares nacionales de calidad ambiental para agua y establecen disposiciones complementarias para su aplicación	Incluyen materiales flotantes en la categoría 1, separan el nitrato y nitrito y, aumentan los parámetros compuestos orgánicos volátiles. Eliminan algunos parámetros del grupo de: trihalometanos, compuestos orgánicos volátiles, hidrocarburos aromáticos, organofosforados, cianotoxinas y microbiológicos.
6	DS Nº 004-2017- MINAM	Estándares de calidad ambiental (ECA) para agua y establecen disposiciones complementarias	Incluyen al parámetro químico Amoniaco. Eliminan a los parámetros como el cromo hexavalente en la categoría 1 y

categoría 3; el cadmio, manganeso y berilio en la categoría 4. Respecto a los metales pesados contaminantes no varía la concentración requerida, sin embargo; siguen sin regular el vanadio en las categorías. Se mantienen los parametros Coliformes termotolerantes y Escherichia coli.

Nota. Información de los reglamentos mencionados en la tabla.

Respecto al lineamiento para efluentes mineros la normativa vigente elimina cianuro libre y cianuro wad, siendo remplazados por cianuro total. Así mismo, se observó que incluyeron 05 elementos como son aceite y grasas, cadmio, cromo VI y mercurio. Respecto al arsénico, plomo y zinc, elementos que estaban regulados en la RM Nº 011-96-EM/VMM, fueron bajados los lineamientos.

En la categoría 1- A2, hubo elementos que desaparecieron como sustancias activas al azul de metileno (SAAM), fenoles, nitrógeno amoniacal, aldrín, entre otros. Así mismo, hubo parámetros que se mantuvieron al igual que su lineamiento, siendo el caso de aceites y grasas, demanda biológica de oxígeno (DBO), demanda bioquímica de oxígeno (DBO), entre otros. En la última normativa (DS Nº 004-2017-MINAM) incluyen a la clorofila y magnesio.

En la categoría 3, riego de vegetales y bebida de animales, hubo elementos que desaparecieron como hidrocarburos aromáticos y algunos de los iones (calcio, sodio, fosforo, sulfuro). Respecto a los organoclorados se mantiene y sobre los microbiológicos se mantienen los coliformes, huevos de helmintos.

En la categoría 4, conservación del medio acuático, hubo elementos que desaparecieron como el cianuro, fosforo, solidos totales disueltos y sulfuro de hidrógeno. En el grupo de los orgánicos los elementos se mantiene al igual que en el microbiológico, es decir coliformes termotolerantes. Los únicos parámetros que no han variado su regulación son los de campo (pH, temperatura, conductividad eléctrica y oxígeno disuelto), es decir; que mantienen los criterios de concentración desde la normativa del 2008.

En el Anexo J, se muestra todos los parámetros considerados en la normativa desde 1996 hasta 2017.

III Aportes más destacables a la empresa MWH Perú

El autor durante su permanencia en la empresa MWH elaboró una serie de formatos que permitieron un ágil, ordenado y control de los procedimientos y registros de información durante el desarrollo de monitoreos de calidad de agua superficial y subterránea, para diferentes proyectos mineros. A continuación, se detalla los aportes destacados.

- listado de equipo y materiales de monitoreo,
- formato de calibración de equipos de medición de parámetros de campo,
- formato de recolección de muestras de agua,
- elaboración de una base de datos en excel con todos los resultados de laboratorio desde el primer monitoreo,
- elaboración de una tabla con todos los criterios aplicables sobre calidad de agua y efluentes. En dicha tabla, se incluyó a varias organizaciones mundiales como la de salud (OMS), banco mundial, guía de agua potable de Canadá, agencia de protección ambiental de los Estados Unidos (USEPA), y
- protocolo de monitoreo participativo de calidad de agua para el proyecto El Galeno.

IV Conclusiones

- El autor obtuvo el grado de bachiller en el año 1999. Ingresó a la empresa MWH en el año 2005 hasta el 2011. MWH aportó en la formación profesional del autor en el que inició como monitorista (calidad de agua) hasta ocupar el puesto de especialista ambiental (en recursos hídricos). Tras su salida de MWH pasó por instituciones privadas y públicas, combinando sus conocimientos en ingeniería geográfica con los aspectos ambientales y el sistema de información geográfica (GIS). Acumuló 1 292 horas lectivas en los últimos diez años entre ellos una maestría en ingeniería ambiental (2014) y un diplomado en gestión ambiental y defensa de los recursos naturales (2016), ver Anexo C.
- El plan desarrollado demostró ser una herramienta para los monitoreos de calidad de agua que se desarrollaron en el año 2010 y años subsiguientes para la empresa LUMINA. La planeación previa a campo ayudó a optimizar procesos, trabajar en equipo, entre otras debilidades y fortalezas que hasta ahora son consideradas por el autor. Además, cumplió con los objetivos propios del monitoreo como fue la caracterización de los recursos hídricos ubicados en el área de influencia directa e indirecta del proyecto de exploración El Galeno de acuerdo a la normativa vigente.
- El plan de monitoreo se basó en normativa nacional (DIGESA) e internacional (USEPA, agencia federal de Estados Unidos para la protección del ambiente y la vida y la American Public Health Association) conteniendo procedimientos estandarizados que ayudaron a minimizar y eliminar errores durante la recolección de muestra, manejo de documentación, evaluación de resultados y el AC/CC.
- Al implementar la verificación diaria de la lista de materiales y equipos antes de salir al campo se logró disminuir los contratiempos en el campo como la pérdida de tiempo

al retornar por algún material o equipo, o el extender el tiempo de muestreo por el cambio del programa de monitoreo.

- Los resultados de los monitoreos mensuales y trimestrales fueron ingresados en una hoja de cálculo excel facilitando la elaboración de gráficos, análisis de resultados, evaluación del comportamiento de los analitos en el tiempo y la rápida entrega de gráficos o reportes solicitados por el cliente (LUMINA).
- Otro aporte del autor fue la elaboración de la base de datos de lineamientos internacionales sobre calidad de agua y efluentes. Dicha base permitió una mejor evaluación de los resultados de laboratorio para los parámetros que no contaba con ECAs para agua en Perú. Además, facilitó el análisis de evaluación de las regulaciones de calidad de agua en el tiempo, resumen que se presenta en el Anexo J.

V Recomendaciones

- Durante la elaboración de un plan de monitoreo se recomienda revisar las normas internacionales como USEPA, agencia federal de Estados Unidos para la protección del ambiente y la vida y la American Public Health Association) para incluir procedimientos estándares que no contemplan la legislación peruana, de este modo se estará manteniendo el principio de conservación y protección de los recursos como aire, agua, suelo, etc.
- Se recomienda tener un listado con todos los materiales y equipos que se usaran en el monitoreo, el cual se verificará diariamente antes de salir a campo a fin de evitar muestras incompletas, retraso y/o alteración del programa de monitoreo, etc.
- Además, de la libreta y formatos generados en campo durante el monitoreo se recomienda incluir un aplicativo en el dispositivo móvil o table para el registro de los parámetros de campo, calibración de equipo, fotos georreferenciadas u otro dato el cual permita acceder en tiempo real e imprimirlos en formato establecidos para adjuntarlos en el informe de reporte de resultados de monitoreo. Esto permitirá disminuir los errores de transcripción de datos.
- Se recomienda incluir en el plan de monitoreo un método (comparando los resultados de muestras primarias y duplicadas) que permita evaluar la presión de los datos reportados por el laboratorio.

- Agencia de Protección Ambiental de Estados Unidos [EPA]. (2018, 13 de Febrero). *Nuestra misión y lo que hacemos*. <u>https://espanol.epa.gov/espanol/nuestra-mision-y-lo-que-hacemos</u>
- American Public Health Association Association [APHA]. (1998). Standard methods for the examination of water and wastewater. American Water Works Association. <u>http://srjcstaff.santarosa.edu/~oraola/Assets/APHA_SM_20.pdf</u>
- Autoridad Nacional del Agua [ANA]. (2016). Protocolo nacional para el monitoreo de la calidad de los recursos hídricos superficiales. https://www.ana.gob.pe/sites/default/files/publication/files/protocolo_nacional_para_e l_monitoreo de la calidad de los recursos hidricos superficiales.pdf
- Engineering News-Record. (2008). The top 200 international design firms. https://www.enr.com/ext/resources/static_pages/PDFs/national_toplists/Intl-Design_ Firms/2008-Intl_Design_Global_Firms.pdf
- Lumina Copper S.A.C. (2011). Informe de resultado de monitoreo mensual de calidad de agua, mayo 2011, Microcuenca Río Grande [pdf].
- Lumina Copper S.A.C. (2011). Informe de resultado del monitoreo trimestral de calidad de agua setiembre 2011, Microcuenca del Río Grande [pdf].
- Lumina Copper SAC. (2011). *Tércera modificación del EIAsd del proyecto de exploración el* galeno - ampliación del campamento. http://intranet2.minem.gob.pe/web/dgaam/inicio_evaluacion_eia_new.asp?Anio=2011 &Mes=00&radio1=E&submit=Consulta
- Lumina Copper S.A.C. (2014). IV Modificación del EIAsd categoría II de las actividades de exploración El Galeno [pdf].
Ministerio de Energia y Mina [MEM]. (2019). Segunda modificación del estudio de impacto ambiental semidetallado del proyecto de exploración minera El Galeno. http://intranet2.minem.gob.pe/web/archivos/dgaam/inicio/resumen/RE_1944762.PDF

Montgomery Watson. (2001). Introducción y experiencia laboral [pdf].

Montgomery Watson Harza Perú S.A. [MWH]. (2003). Plan general de seguridad, salud y medio ambiente [pdf].

Montgomery Watson Harza Perú S.A. [MWH]. (2007). Manual del empleado [pdf].

Montgomery Watson Harza Perú S.A. [MWH]. (2009). Pasado, presente y futuro [pdf].

- Quintanilla, Monica. (2012, 19 de Enero). *MWH Global*. A/E Firms + Profiles. <u>https://aefirms.wordpress.com/2012/01/19/mwh-global/</u>
- Reference for Business. (2019). Harza Engineering Company. https://www.referenceforbusiness.com/history2/54/Harza-Engineering-Company.html
- Revistel. (2014, 15 de Octubre). *MWH realiza estudios para 7 proyectos hiddroeléctricos*. <u>https://revistel.pe/mwh-realiza-estudios-para-7-proyectos-hidroelectricos/</u>
- Water & Wasted Digest [WWD]. (2015, 20 de Febrero). *Consulting firm launches to address busines challenges*. <u>https://www.wwdmag.com/consultants-misc/consulting-firm-launches-address-business-challenges</u>
- WEF Highlight. (2013, 18 de Noviembre). *Distinguished members named 2013 WEF fellows*. https://news.wef.org/distinguished-members-named-2013-wef-fellows/

Wikipedia. (2020, 29 de Julio). MWH Global. https://en.wikipedia.org/wiki/MWH_Global

VII Anexos

- Anexos A Grado académico
- Anexos B Certificado y constancia de postgrado
- Anexos C Constancias de cualificación profesional
- Anexos D Constancias de prácticas pre-profesionales
- Anexos E Constancias laborales
- Anexos F Manuales de equipos
- Anexos G Reportes de laboratorio
- Anexos H Formatos de campo
- Anexos I Cotización de laboratorio

Anexos J Resumen de los criterios aplicables de calidad de agua y efluentes

Anexo A (Grado académico)

República Perie del A Nombre de la Nación El Rector de la Universidad Nacional "Federico Villarreal. Por cuanto : El Consejo de Facultad de Ingenieria Deografico y Ambienta elotorgamiento del Groso de Bochiller en Ingenierio Geogracico. Tthel Queia Zánchez Colonge Y, el Consejo Universitario con fecha 13 de Zetiembre de 1999 le ha conferido el \$19.00. correspondiente. Por tanto : le expido el presente Diploma para que se le reconozca como tul. Dado en la ciudad de Lima, a los .13... dias del mes de .. Setiembre... de 19.99. DECANO do a foias 215 del Libro 74 respectivo con el No.5479

UNIVERSIDAD NACIONAL FEDERICO VILLARREAL FACULTAD DE INGENIERIA GEOGRAFICA Y AMBIENTAL D E C A N A T O

Av. Colonial Nº 450-Lima / Telefax 433-9760 * * *

RESOLUCION DE FACULTAD Nº 036-2000-FIGA-UNFV

Lima, Enero 25, 2000.

Vista la solicitud Nº 4235-99, presentado por la Señorita ETHEL LUCIA SANCHEZ CALONGE, Bachiller en Ingeniería Geográfica pidiendo se le declare Expedito a fin de obtener el Título Profesional de INGENIERO GEOGRAFO.

CONSIDERANDO:

Que, al estar de conformidad con la Ley Universitaria Nº 23733, el Decreto Legislativo Nº 739-91, y el Artículo Nº 139 del Estatuto de la Universidad Nacional Federico Villarreal, los señores alumnos podrán acogerse a los Dispositivos Legales vigentes para obtener el Grado de Bachiller asi como la Licenciatura o Título Profesional.

Que, de acuerdo al Informe N° 161-99-AGYT-FIGA del 16 de Diciembre de 1999 del Area de Grados y Títulos de la Facultad, que opina favorablemente por la procedencia del petitorio del recurrente, expediente que es aprobado en Sesión de Comisión Directiva de fecha 05.01.2000.

En uso de las atribuciones conferidas al Decano (i) de la Facultad de Ingeniería Geográfica y Ambiental al amparo de la Resolución C.R. Nº 012-99-UNFV de fecha 15.12.99 y Resolución C.R. Nº 291-2000-UNFV de fecha 20.01.2000.

SE RESUELVE:

ista Geográfica y

ARTICULO UNICO.-Declárese EXPEDITO a la Srta. ETHEL LUCIA SANCHEZ CALONGE, Bachiller en Ingenieria Geográfica para obtener el TITULO PROFESIONAL de INGENIERO GEOGRAFO, debiendo cumplir con lo dispuesto con el Reglamento del Area de Grados y Títulos de la Facultad de Ingeniería Geográfica y Ambiental, según el Estatuto vigente.

Registrese, comuniquese y archivese.

Ing. Mg. JORGE LESCANO SAMDOGAENO DECANO (i) FACULTAD DE INGENIERIA GEOGRAFICA Y AMELENTA

NACIONAL FEDERIC CESAR CABREL LA ROSA SECRETARIO INGENIERIA GEOGRAFICA'Y AMBIENTAL

Anexo B

(Certificado y constancia de postgrado)

UNIVERSIDAD NACIONAL FEDERICO VILLARREAL

FACULTAD DE INGENIERIA GEOGRAFICA Y AMBIENTAL SECCION DE POST GRADO

OTORGA EL CERTIFICADO DE EGRESADO

A: Ethel Lucia Panchez Calonge

Por haber aprobado satisfactoriamente el Plan de Estudios del Primer Curso de Segunda Especialidad Profesional en ORDENACIÓN DEL TERRITORIO Y MEDIO AMBIENTE - COTMA 2003.

24

Universidad Nacional Federico Villarreal

19

....

Secretaria Académica

"Año de la Diversificación Productiva y del Fortalecimiento de la Educación"

CONSTANCIA DE EGRESADO

El Director y el Secretario Académico de la Escuela Universitaria de Post Grado de la Universidad Nacional Federico Villarreal; hacen constar que don (ña):

SANCHEZ CALONGE ETHEL LUCIA

Con código Nº 2010330555 ingresó en el año 2010-I, concluyendo sus estudios satisfactoriamente en el año académico 2014-S, habiendo cursado y aprobado el total de asignaturas según Récord Académico, correspondiente al Programa de la MAESTRIA EN INGENIERIA AMBIENTAL, estando pendiente la Resolución de Expedito para optar el Grado Académico de MAESTRA.

Se expide la presente, a solicitud del interesado (a) para los fines que estime conveniente.

NALFER Dr. José Luis La Rosa Botonero Director 1-0 C.Nº. 01980 NT - 48315 gr.

Jr. Camaná Nº 1014 – Lima

Lima, 22 de julio del 2015 ACIONALFEDR

SECRETARIA

D: 748-0888 IP 9508 Fax =: 433-8071

Dr. Samago Hugo Castro Palomino Secretario Académico

Anexo C

(Constancias de cualificación profesional)

REPÚBLICA DEL PERÚ Centro de Altos Estudios Nacionales Escuela de Posgrado Ley 28830, 21 de Julio del 2006

Otorga el presente Diploma a :

BACHILLER EN INGENIERÍA GEOGRÁFICA ETHEL LUCÍA SANCHEZ CALONGE

Por haber culminado satisfactoriamente los estudios del "VI Diplomado en Gestión Ambiental y Defensa de los Recursos Naturales", llevado a cabo del 21 de junio del 2015 al 03 de Febrero del 2016, con una duración de 384 horas académicas.

ne Roberto Vizcardo Benavides Secretario General

REGISTRO

Nº 12

Dr. Walter Enrique Astudillo Chávez Gral Brig EP Director General

Chorrillos, 18 de Febrero del 2016

Dr. Jorge Luis Cardich Pulgar Director Académico

Universidad Nacional Federico Villarreal

CESAP

Centro de Estudios Superiores y Actualización Profesional iCAPACITANDO PARA UNA NUEVA ERA!

COLEGIO DE INGENIEROS DEL PERÚ CONSEJO NACIONAL

Otorga a:

El presente Diploma por haber concluido y aprobado el Diplomado de Especialización en:

"GESTION AMBIENTAL Y EVALUACION DE IMPACTO AMBIENTAL"

Desarrollado desde el 16 de Agosto del 2008 hasta el 07 de Febrero del 2009 cumpliendo satisfactoriamente un total de 520 horas lectivas. Valor Curricular 36 Créditos

Dado y firmado en Lima, el 07 del mes de Febrero del 2009.

Mg. Øscar Benavides Cavero Di Decado de la Facultad de Ingeniería Geográfica, Ambiental y Ecoturismo de la Universidad Nacional Federico Villarreal Ma-PERV Registro a Foja GEIA VI L/0074/09 de libro de Actas

Lic, Azucena Vera Eudavil ENTR Gerente General CESAP

CERTIFICADO

Otorgado a:

ETHEL LUCÍA SÁNCHEZ CALONGE

Por haber recibido capacitación en el Curso:

GESTIÓN AMBIENTAL EN PROYECTOS DEL SECTOR TRANSPORTES

LLEVADO A CABO EN LAS INSTALACIONES DEL COLEGIO DE INGENIEROS DEL PERU, EN AV. AREQUIPA Nº4947, MIRAFLORES EL DÍA SÁBADO 22 DE FEBRERO DE 2020, CON UNA DURACIÓN DE 04 HORAS EFECTIVAS.

LIMA, FEBRERO 2020

QUÍM.FANY CENTENO SAIRE Gerente General OZONE GROUP S.A.C

GLOBAL YAKU CONSULTORES S.A.C

Otorga la presente constancia a:

ETHEL LUCIA SÁNCHEZ CALONGE

Por haber asistido al curso:

"CERTIFICACIÓN AMBIENTAL EN EL SECTOR TRANSPORTES"

Dictado como parte del plan general de formación ambiental de Global Yaku Consultores S.A.C. a sus colaboradores, con un total de 40 horas lectivas, del 23 de noviembre al 01 de diciembre 2018.

Lima, 01 de diciembre de 2018

Alfredo Huamani Huaccan

GERENTE GENERAL

GLOBAL YAKU CONSULTORES S.A.C

Otorga la presente constancia a:

ETHEL LUCIA SÁNCHEZ CALONGE

Por haber asistido al curso:

"HIDROGEOLOGÍA PARA ESTUDIOS AMBIENTALES"

Dictado como parte del plan general de formación ambiental de Global Yaku Consultores S.A.C. a sus colaboradores, con un total de 20 horas lectivas, del 14 al 16 de noviembre 2018.

Lima, 16 de noviembre de 2018

Alfredo Huamahi Huaccan GERENTE GENERAL GLOBAL YAKU CONSULTORES S.A.C

CERTIFICADO

Se otorga a: ETHEL LUCÍA SÁNCHEZ CALONGE

Por haber participado en el Taller de Capacitación :

"TALLER MACRO REGIONAL AMAZÓNICO – NORTE SOBRE LEVANTAMIENTO DE SUELOS Y CLASIFICACIÓN DE TIERRAS POR SU CAPACIDAD DE USO MAYOR"

Realizado en la ciudad de Tarapoto - San Martín, los días 01 y 02 de

diciembre de 2016, con un total de dieciséis (16) horas lectivas.

Ing. Américo Sihuas Aquije Director General DIRECCIÓN GENERAL DE ASUNTOS AMBIENTALES AGRARIOS

Víctor Manuel Noriega Reátegui Gobernador Regional Gobierno Regional San Martín

"AGRO PRÓSPERO" – Kawsay Wiñay Rurunampaq

CONSTANCIA

El Gobierno Regional de Ucayali - GOREU El Programa Nacional de Conservación de Bosques para la Mitigación del Cambio Climático del Ministerio del Ambiente – MINAM, otorgan la presente constancia a:

ETHEL LUCIA SANCHEZ CALONGE

Por su participación como coorganizador del Curso de Capacitación MODULO I: "Alerta Temprana de Deforestación, mediante el uso de la Plataforma GEOBOSQUES", dirigido al personal del GOREU, principales Entidades Públicas y Sociedad Civil de Ucayali, realizado en la ciudad de Pucallpa el 29 de noviembre del 2016, con un total de 12 horas pedagógicas.

CESAR AUGUSTO CALMET DELGADO Coordinador Ejecutivo (e) Programa Nacional de Conservación de Bosques para la Mitigación del Cambio Climático MINAM

Lima, 28 de diciembre de 2016

LUIGI ROBERTO VARGAS MERA Autoridad Regional Ambiental Gobierno Regional de Ucayali GOREU

GĚRENS | ESCUELA DE POSTGRADO

Se otorga el presente Certificado a

ETHEL LUCÍA SÁNCHEZ CALONGE

por haber participado en el

Programa Gestión de los Recursos de Agua en Minería y Energía

llevado a cabo del 17 de julio al 24 de octubre del 2015, con un total de 80 horas.

Lima, noviembre del 2015.

9hizzgit

Flora Miyagi M., MBA Secretaria General Rodrigo Prialé Z., Ph.D. Gerente General

GESTAGUA170715-009

UNIVERSIDAD NACIONAL AGRARIA LA MOLINA FACULTAD DE CIENCIAS DEPARTAMENTO DE INGENIERÍA AMBIENTAL, FÍSICA Y METEOROLOGÍA CENTRO DE GESTIÓN Y TECNOLOGÍA AMBIENTAL

CERTIFICADO

OTORGADO A: Ethel Lucía Sánchez Calonge

Por haber **Asistido y Aprobado** el Curso: **"Supervisión Ambiental Directa: Recurso Agua"**, realizado en el campus de la UNALM el 22, 23 y 24 de junio del presente año, con un total de 20 horas lectivas.

Registro Nº: SAD:RA-021

La Molina, 04 de julio del 2012

M. Sc. Victoria Calle Montes **Directora CGTA**

CERTIFICADO

Otorgado a:

ETHEL LUCIA SANCHEZ CALONGE

Por su participación al Curso Taller Especializado:

"CIERRE DE MINAS Y GESTIÓN DE RESIDUOS MINEROS", realizado los días 31 de enero y 01 de febrero del 2020, organizado por la consultora Cisneros Organization S.A.C., en el Hotel Four Points by Sheraton, con una duración de 48 horas lectivas.

Lima, 01 de febrero del 2020

ABG. OSCAR ALBERTO ECHAIZ CABAÑAS DIRECTORACADÉMICO

ETHEL LUCIA SANCHEZ COLANGE

Por haber aprobado el Curso de Gestión Integrada de Recursos Hídricos 2017, con 102 horas lectivas, desarrollando los siguientes módulos:

Módulo 1: Bases conceptuales, instrumentales y normativas de la GIRH Módulo 2: Gobernanza y participación en la gestión del agua Módulo 3: Cultura del agua

Abg. YURY A. PINTO ORTIZ Secretario General AUTORIDAD NACIONAL DEL AGUA

Dr. NESTOR MONTALVO ARQUIÑIGO Decano Facultad de Ingeniería Agrícola UNIVERSIDAD NACIONAL AGRARIA LA MOLINA Lima, 2017

Certificado

Ethel Sauchez Caloure

participó en el Curso:

"Sistemas de Gestión Ambiental – EMASeasy como soporte de la Ecoeficiencia"

El curso sobre la certificación del sistema de gestión ambiental EMAS basado en la metodología de EMASeasy proporcionó los siguientes conocimientos:

- Fundamentos y principios del sistema de gestión ambiental EMAS
- Lo seis pasos para la introducción del sistema de gestión ambiental
- Diagnóstico ambiental y participación de los trabajadores
- Ecomapeo como diagnóstico ambiental (trabajo práctico)
- Indicadores básicos ambientales
- Programa ambiental
- Manual de gestión ambiental
- Pasos para la elaboración de una política ambiental
- Auditoría interna
- Estructura de la declaración ambiental

El curso se llevó a cabo del 13 al 17 de octubre 2014 con un total de 20 horas y contó con sesiones teóricas y ejercicios prácticos. Al final de curso el/la participante presentó los resultados del trabajo práctico del ecomapeo, los aspectos ambientales detectados, la priorización de las actividades y el programa ambiental, con éxito.

Lima 17 de octubre 2014

Coordinadora CTA

A. Cuital(10 Angela Giraldo

Angela Giraldo Gerente de kate

Schlumberger Groundwater & Environmental Training Courses Water Quality Data Management & Modeling Using AquaChem and PHREEQC

Otorgan el presente

Reconocimiento

a: Ethel Lucia Sánchez Calonge

Por su participación en el curso "Gestión de Datos y Modelado de Calidad de Agua" efectuado del 22 al 24 de noviembre con una duración de 20 horas.

Lima, Perú, 24 de noviembre de 2010.

Patrieio Crespo, MSc. Ing. Civ. Instructor SWS Aquachem

CERTIFICADO

Se otorga el presente CERTIFICADO a:

ETHEL SANCHEZ

por haber asistido al Curso Internacional Especializado en Minería:

HIDROGEOLOGIA MINERA AVANZADA CALIDAD DE AGUAS SUBTERRANEAS Y PROYECTOS DE REMEDIACION

Organizado y Certificado por INTERCADE,

con una duración total de 20 horas.

17 al 18 de Abril de 2010

Lima - Perú

Organiza y Certifica Intercade

.............

CESAR GALLARDO VELA PRESIDENTE & CEO INTERCADE

DR. FIDEL RIBERA URENDA CONSULTOR INTERCADE

Anexo D

(Constancias de prácticas pre-profesionales)

SERVICIO NACIONAL DE METEOROLOGIA E HIDROLOGIA SENAMHI

CONSTANCIA

PRACTICAS PRE-PROFESIONALES

El que suscribe : Jefe del Servicio Nacional de Meteorología e Hidrología - SENAMHI

CERTIFICA:

Que, la Srta. *ETHEL LUCIA SANCHEZ CALOGNE*, estudiante de la Facultad de Ingeniería Geográfica y Ambiental de la Universidad Nacional Federico Villarreal, ha realizado sus practicas pre-profesionales en las oficinas de la Dirección General de Meteorología del 04 mayo a 31 de julio de 1998 y la Oficina de Estadística e Informática del 03 de agosto al 03 de setiembre de 1998 durante 05 meses desarrollando las siguientes actividades:

Area : Meteorología

Actividad Monitorco del Fenómeno de "EL NIÑO"

- Digitación de base de datos de boyas
- Digitación de datos de precipitación, presión de estaciones sinópticas costeras
- Verificación de datos de precipitación a nivel nacional para obtener valores normales

Area : Informática

- Conocimiento general de la organización de la OGEI (Banco Nacional de Datos)
- Planteamiento de un Plan Piloto del Sistema de Información Geográfica
- Registro y archivo de la Información Hidrológica (planillas pluviométricas e hidrológicas)
- Análisis de la Información Hidrológica de la DRE Arequipa.

Asimismo, Srta. SANCHEZ CALOGNE, durante el desarrollo de sus prácticas pre-profesionales ha mostrado esmero, puntualidad y responsabilidad.

Se expide la presente constancia a solicitud del interesado para los fines que estime pertinente.

Sede: Jr. Cahulde Nº 805 Oficina 401- Lima 11 Casilla Postal 1308 Telf.: (511) 472-4180 Fax: 471-7287 E-mail: postmaster@senamh.gob.pe

MINISTERIO DE DEFENSA SERVICIO NACIONAL DE METEOROLOGIA E HIDROLOGIA SENAMHI

CONSTANCIA

EL JEFE DEL SERVICIO NACIONAL DE METEOROLOGIA E HIDROLOGIA - SENAMHI

CERTIFICA:

Que, la Srta. ETHEL LUCIA SANCHEZ CALONGE, Bachiller egresada de la Facultad de Ingeniería Geográfica de la Universidad Nacional Federico Villarreal, ha realizado sus Prácticas Pre – Profesionales del 10 de febrero de 1999 al 17 de Febrero del 2000, habiendo desarrollado las siguientes actividades:

- 1. Control de calidad de la información meteorológica.
- 2. Control de calidad de la información hidrológica.
- 3. Elaboración del Proyecto Piloto para la implementación de un Laboratorio de Sistema de Información Geográfica SIG en la Oficina General de Informática OGEI.
- 4. Elaboración de la encuesta Cartográfica.
- 5. Participación en la Asociación BCEOM-SOFI CONSULT S. A. ORSTOM.

1

Habiendo desempeñado las tareas encomendadas con dedicación, esmero y

Se expide la presente constancia a solicitud de la interesada para los fines pertinentes.

NICEFORO ITA MAGUIÑA Director del centro de Capacitación SS METIOROLOGY

Lima, 22 de Febrero de 2000

Mayor general FAP GERMAN ROJAS BARRANTES JEFE DEL SENAMHI

> P/O del Jefe del SENAMHI CORONEL FAP CARLOS ORDONEZ VELAZQUEZ Direr tor Técnico del SENAMHI

SENAMHI - ORGANISMO RECTOR DE LAS ACTIVIDADES METEOROLOGICAS, HIDROLOGICAS Y DEL AMBIENTE ATMOSFERICO EN EL PERU

Sede: Jr. Cahuide Nº 805 Oficina 401 - Lima 11 Casilia Pastal 1308 Telf:(51-1) 472-4180 Fax: 471-7287 E-mail: senamhi@senamhi.gob.pe

Anexo E (Constancias laborales)

Ministerio de Agricultura

Consejo Nacional de Camélidos Sudamericanos

CERTIFICADO

El Jefe del Consejo Nacional de Camélidos Sudamericanos - CONACS, **Región Lima CERTIFICA que:**

La Srta. Ethel Lucia Sánchez Calonge, ha laborado en la Región Lima, desempeñando el cargo de Especialista de la Unidad de Información de Estadística y Cartografía, desde el 03 de enero del 2000 al 29 de setiembre del 2000.

Durante este periodo de labor a demostrado eficiencia y responsabilidad en el desempeño de sus funciones.

Se expide el presente CERTIFICADO para los fines que el interesado considere pertinentes.

Lima, 29 de setiembre del 2000.

Jr. Cahuide 805 - Piso 10 - Jesús María (Lima 11) Perú Telf .: (51-1) 470-8699 / 471-0865 Fax: 471-0555 E-mail: conacs@amauta.rcp.net.pe http://www.minag.gob.pe/MINAG/conacs

CERTIFICADO

Se otorga el presente certificado a :

Ethel Lucía Sánchez Calonge

Por su servicio profesional como especialista en Sistemas de Información Geográfica durante la ejecución del Proyecto de Integración del Sistema de Vigilancia en el Control y Prevención del Dengue y Dengue Hemorrágico, realizado en la Ciudad de Iquitos del 16 de Agosto al 16 de Diciembre del 2002

Dr. Wilfredo Martín Casapia Morales Director General Adjunto Iquitos, 16 de Diciembre del 2002.

Dr. Hugo Rodríguez Ferrucci Director Ejecutivo de Epidemiología MINISTERIO DE SALUD HOSPITAL DE APOYO " SANTA GEMA " YURIMAGUAS

LA DIRECTORA GENERAL DEL HOSPITAL DE APOYO "SANTA GEMA" YURIMAGUAS, QUE SUSCRIBE;

HACE CONSTAR:

Que la Señorita Eihel Lucia SANCHEZ CALONGE, Consultora del Proyecto de Implementación del Sistema de Información Geográfica para el Control y Monitoreo del Dengue y Malaria, ha realizado el Servicio de Consultoria en la Oficina de Epidemiología del Hospital Santa Gema Yurimaguas durante los meses Febrero y Marzo del 2004.

Se expide el presente documento para los fines que estime conveniente.

Yurimaguas, 16 de Julio de 2005

Atentamente,

GOBIERNO REGIONAL DE LORETO DIRECCIÓN REGIONAL DE SALUE LORETO NOSPITAL DE APOYO YURINAUUAS LECTORED Dra. LIPA E DEVENSIO BARDALEZ

LENB/DDFP/ddfp

A QUIEN CORRESPONDA

Dejamos constancia que la Srta. Ethel Lucila Sánchez Calonge, se ha desempeñado como Consultora Externa en el Área de Monitoreo & Evaluación en periodos consecutivos desde el 30 de abril hasta el 14 de setiembre de 2004.

Expedimos el presente documento a solicitud de la interesada, para los fines que estime pertinentes.

Lima, 19 de enero de 2005.

Septiment

Adriana Quevedo Cuadros Coordinadora de Recursos Humanos

COMPAÑÍA MINERA SAN VALENTIN S.A. RUC 20153288519 CALLE: STRAUS Nro: 781 SAN BORJA TELEFONOS: 4752316

LIMA, PERU

CERTIFICADO DE TRABAJO

El que suscribe Gerente de Operaciones Cía. Minera San Valentín S. A.

CERTIFICA

Que la Ing. ETHEL LUCÍA SÁNCHEZ CALOGNE, identificada con DNI Nº 06784922, ha laborado en mi representada desde el 01 de setiembre del 2004 hasta el 31 de enero del 2005, desempeñándose como JEFE DEL DPTO. DE MEDIO AMBIENTE, dentro de la Unidad Económica Administrativa "SOLITARIA", en el distrito de Laraos, Yauyos, Lima.

Durante Su permanencia se desempeñó satisfactoriamente, demostrando eficiencia en el cumplimiento de sus labores.

Se otorga el presente certificado a solicitud del interesado, para los fines que estime conveniente.

San Valentín, 01 de febrero del 2005

/ICTOR C. TORRES N. Gerente de Operadones

PERÚ Ministerio de Educación Secretaría General Oficina General de Administración Unidad de Personal

"Año de la Inversión para el Desarrollo Rural y la Seguridad Alimentaria" "Decenio de las Personas con Discapacidad en el Perú 2007 - 2016"

CONSTANCIA DE TRABAJO

EL JEFE DE LA UNIDAD DE PERSONAL DE LA SEDE CENTRAL DEL MINISTERIO DE EDUCACIÓN, QUE SUSCRIBE;

HACE CONSTAR:

Que, doña ETHEL LUCIA SANCHEZ CALONGE con DNI Nº 06784922, prestó servicios en calidad de contratada, para la Unidad de Estadística Educativa del Ministerio de Educación, desde el 01 de marzo del 2006 al 31 de diciembre del 2006.

Se extiende la presente constancia a solicitud de la interesada mediante expediente con registro Nº 78192-2013, y de conformidad con la información contenida en los archivos de esta unidad, para los fines que estime conveniente.

San Borja, 18 de diciembre del 2013

NRIQUE MEJIA ZULDETA Jefe de la Unidad de Personal Ministerio de Educación

CERTIFICADO DE TRABAJO

Mediante el presente documento, certificamos que la Señorita SANCHEZ CALONGE ETHEL LUCIA identificada con DNI Nº 06784922, ha prestado sus servicios en nuestra Empresa desde el 01/07/07 hasta el 30/03/12 en calidad de Geógrafo.

La Señorita Sanchez, ha demostrado puntualidad y buen desempeño en la labor encomendada.

Se expide el correspondiente certificado, para los fines convenientes.

San Isidro, 30 de Marzo del 2012

Atentamente,

Andrew Watson Gerente General

Av. Conquistadores Nº 638 - 4to.piso San Isidro, Lima, Perú Tel: 7003200 Fax: 7003700

Contribuyendo a un Mundo Mejor

"Decenio de la Igualdad de Oportunidades para Mujeres y Hombres" "Año de la Universalización de la Salud"

CONSTANCIA DE PRESTACIONES

Nº 093 - 2020 - OEFA - UAB

El Jefe de la Unidad de Abastecimiento hace constar que:

La Srta. **SANCHEZ CALONGE ETHEL LUCIA**, identificada con **RUC N° 10067849227**, brindó servicios en el **TRIBUNAL DE FISCALIZACIÓN AMBIENTAL** del Organismo de Evaluación y Fiscalización Ambiental - OEFA, según el siguiente detalle:

N° DE ORDEN DE SERVICIO	DESCRIPCIÓN DEL SERVICIO	PERÍODO DE EJECUCIÓN	MONTO DEL SERVICIO (S/)
1613-2011	SERVICIO TÉCNICO ESPECIALIZADO EN MATERIA AMBIENTAL PARA EVALUAR EXPEDIENTES CON RECURSOS DE APELACIÓN.	Del 16/11/2011al 29/12/2011	2,500.00
0135-2012	SERVICIO PARA EVALUAR ASPECTOS TÉCNICOS EN LOS EXPEDIENTES CON RECURSOS DE APELACIÓN.	Del 11/01/2012 al 11/03/2012	3,320.00
0952-2012	SERVICIO PARA REALIZAR INFORMES TÉCNICOS SOBRE TEMAS RELACIONADOS A LABORATORIOS DE ENSAYOS ACREDITADOS Y RESIDUOS SÓLIDOS.	Del 18/05/2012 al 02/08/2012	10,000.00
1967-2012	SERVICIO PARA REALIZAR ABSOLUCIÓN DE CONSULTAS SOBRE INFORMACION DE CARÁCTER TÉCNICO RELACIONADOS AL SECTOR MINERO Y SUB SECTOR HIDROCARBUROS.	Del 07/09/2012 al 24/10/2012	5,000.00

Se expide la presente constancia en virtud del artículo 169° del Reglamento de la Ley de Contrataciones del Estado N°30225 aprobado por Decreto Supremo N° 344-2018-EF, a solicitud de la interesada y para los fines que estime conveniente.

Jesús María, 15 de julio de 2020.

[GALIAGA]

<u>CONSTANCIA</u> LOCACIÓN DE SERVICIOS

Conste por medio de la presente que el Ing. Ethel Lucia Sánchez Calonge identificado con DNI Nº 06784922, ha prestado servicios como Especialista Ambiental bajo la modalidad de Locación de Servicios en GREEN CONSULT S.A., desde febrero hasta Junio del 2014

Se expide el presente certificado para fines que estime conveniente.

Lima, 02 de Julio del 2014.

Ing. Wilfried Graefling Gerente General E-mail: <u>wgraefling@greenconsult.com.pe</u>

CERTIFICADO DE TRABAJO

El Jefe de Recursos Humanos de la empresa SMC SOLEX DEL PERU SAC, que suscribe,

CERTIFICA:

Que, la señorita **ETHEL SANCHEZ CALONGE**, identificada con DNI Nº 06784922, prestó servicios en nuestra empresa, bajo la modalidad de contrato laboral a plazo fijo, en el puesto de **Coordinador de Medio Ambiente**, desde el 13 de mayo de 2013 hasta el 12 de noviembre de 2013, fecha en la que culminó la relación laboral por término de plazo, desempeñándose durante su estadía en la empresa con excelencia profesional y gran empatía con sus compañeros y colaboradores.

Se expide el presente a solicitud del interesado, para los fines que estime conveniente.

Lima, 12 de noviembre 2013

JAIR DA COSTA FILOMENO

Jefe de Recursos Humanos SMC SOLEX DEL PERU SAC

> SMC SOLEX DEL PERU SAC Av. La Molina 634 – La Molina Telf. 01 7074700 - RUC No. 20550434424

CERTIFICADO DE TRABAJO

Lima; 04 de Abril de 2015

Anexo 1-

Por medio de la presente certificamos.

Que, el (la) Señor(a). ETHEL LUCIA, SANCHEZ CALONGE laboró en nuestra empresa desde el 06 de Mayo del 2014 hasta el 04 de Abril del 2015 desempeñando el cargo de INGENIERO DE MEDIO AMBIENTE.

Se expide el siguiente certificado a solicitud de la parte interesada para los fines que estime conveniente.

Atentamente,

FREDDY DEONICIO ARCONDO CCORIMANYA RECURSOS HUMANOS

> STELLAR MINING PERÚ LTD. SUCURSAL DEL PERÚ Av. La Molina 634 – La Molina Telf. 01 7074700 - RUC No. 20545842701

GOBIERNO REGIONAL DE UCAYALI OFICINA DE GESTIÓN DE LAS PERSONAS AREA DE ESCALAFON "Año del buen servicio al Ciudadano"

CERTIFICADO DE TRABAJO

QUIEN SUSCRIBE, DIRECTOR EJECUTIVO DE LA OFICINA DE GESTION DE LAS PERSONAS DEL GOBIERNO REGIONAL DE UCAYALI;

CERTIFICA:

Que la señora, ETHEL LUCIA SANCHEZ CALONGE, identificada con DNI Nº 06784922, ha prestado sus servicios como, ESPECIALISTA EN SISTEMAS DE INFORMACION GEOGRAFICA, en la Dirección de Gestión del Territorio de la Autoridad Regional Ambiental de Ucayali-Gerencia Regional de Recursos Naturales y Gestión del Medio Ambienta del Gobierno Regional de Ucayali, a partir del 22 de noviembre del 2016 al 30 de setiembre del 2017, bajo la modalidad de Contrato Administrativo de Servicios-CAS.

Se Expide el presente a solicitud de la interesada, para los fines que estime pertinente.

Pucallpa, 20 de diciembre del 2017

RAL DE UCATAL GOBIERNO E ADMINISTRACION OFICINA RE W 4 IC. Adam FERNANDO FLORES VELA

02 MAR 2018

SINAD: 0240796

San Borja,

A QUIEN CORRESPONDA

Estimados señores:

For medio del presente, dejamos constancia que el contratista **SANCHEZ CALONGE ETHEL LUCIA**, con RUC N° **10067849227**, ha prestado servicios al Ministerio de Educación – Programa Educación Básica para Todos – Unidad Ejecutora 026, sito en Calle El Comercio Nº 193 - San Borja; en el marco de la **Adjudicación sin Proceso**, de acuerdo al siguiente detalle:

OIS	OBJETO DE LA CONTRATACION	MONTO CONTRATADO	PLAZO DE EJECUCIÓN	PENALIDAD	MONTO PAGADO
(*)0C06025 -2C16	Servicio de recojo y validación de catos cel padrón de IIEE y sistematización de la accesibilidad de IIEE en la UGEL Huarmaca (región Piura), UGEL Piura: cistritos ce Canchaque, Castilla Catacaos, Cuara Mori y Piura zona 1 (región Piura) y UGEL Huarmey (región Áncash) de la Undad de Estad stica – UE 026.	S/ 31,600 00	125 DIAS	S/ 3,160.C0	S/ 28,440.00

(*)Dejamos constancia que el contratista mencionado en el párrafo precedente cumplió con la prestación del servicio; sin embargo debemos señalar que <u>incurrió en penalidad</u> por retraso en la ejecución del mismo; en la(s) Orden(es) de Servicio N°0006025-2016.

Se expide la presente constancia a solicitud del interesado para los fines que estime conveniente.

Atentamente,

LIC. YOVANA ALFARO RAMOS de la Olicina de Logistica

SLEVAR RMAR.

ENVIRONMENT - INNOVATION - TECHNOLOGY AMBIENTE - INNOVACIÓN Y TECNOLOGÍA

CERTIFICAMOS por el presente documento que la Srta.:

SANCHEZ CALONGE ETHEL LUCIA DNI N° 06784922

Ha laborado en nuestra empresa desde el 03 de diciembre del 2018 al 31 de diciembre del 2019.

Durante el tiempo que la Srta. SANCHEZ CALONGE ETHEL LUCIA estuvo con nosotros, se desempeñó como HIDROGEOLOGA DE PROYECTOS.

Expedimos el presente documento a solicitud del interesado para los usos y fines que estime conveniente.

Lima, 31 de diciembre 2019.

RENTE CENERAL KU CONSULTORES S.A.C GLOBA.

Av. 02 de Mayo N°516 Of. 201, Miraflores, Lima, Perú Tel. +51 – (1) – 237 7723 www.globalyaku.com

Anexo F (Manuales de equipos)

YSI Environmental

YSI 556 MPS Sistema Multi-Sonda Manual De Instrucciones

Contenidos

1.	Seg	uridad	1
	1.1	Información de seguridad general	1
2.	Info	ormación General	7
	2.1	Descripción	7
	2.2	Desempacar el Instrumento	8
	2.3	Características del Sistema Multi-Sonda YSI 556	9
	2.4	Baterías	
	2.5	Encendido	15
	2.6	Como establecer la visualización de Contraste de Pantalla	15
	2.7	Luz de fondo	
	2.8	Características generales de la pantalla	
	2.9	Uso del teclado	/ I
	2.10	Organigrama	18 10
2	2.11 TT •		
3.	Uni	dad de Sonda	20
	3.1		
	3.2	Desempacar la Unidad de Sonda	
	5.5 2.4	Dranaragión de la Unidad de Sonda Y SI 5505	
	3.4	Recipiente de Transporte/ Calibración	
	3.6	Conexión del Instrumento/ Cable	
1	Son		
т.	501	501 C5	
5.	Info	orme	
6.	Cal	ibración	34
	6.1	Preparación para Calibración	
	6.2	Operaciones de Calibración	
	6.3	Como volver a la configuración original de fábrica	54
7.	Eje	cutar	56
	7.1	Datos a tiempo Real	
8.	Arc	hivo	
	81	Acceso a la pantalla de archivo	58
	8.2	Directorio	
	8.3	Ver Archivo	
	8.4	Transferir a PC	61
	8.5	Memoria del archivo	
	8.6	Borrado de todos los Archivos	67

Contenidos

9.	Car	gar configuración	69
	9.1	Acceso a la pantalla de Cargar Configuración	69
	9.2	Establecimiento de un intervalo de acceso	
	9.3	Almacenamiento de las lecturas de Barómetro almacenadas	70
	9.4	Como Crear una lista de Sitios	71
	9.5	Edición de lista de sitios	75
	9.6	Ingreso de Datos Sin Lista de Sitios	
	9.7	Ingreso de datos con una lista de sitios	
	9.8	Añadir datos a archivos existentes	
10.	Con	figuración del sistema	
	10.1	Acceso a la configuración del sistema	
	10.2	Cambiar el Idioma	
	10.3	Configuración de la Fecha y la Hora	
	10.4	Filtro de Datos	
	10.5	Temporarizador de apagado	
	10.6	Coma de Decimal	
	10./	Identificación	
	10.8	Constante TDS	
	10.9	Unidades Barométricas	
	10.10	Calibración del Barómetro	93
11	Mar	ntenimiento	95
	11.1	Cuidado del Sensor y Mantenimiento	95
	11.1	Actualizar el Software del YSI 556 MPS	101
12	Δlm	acenamiento	101
14,	12.1	Pagamandagianas Canaralas para al Almaganamianto a Corto Plaza	104
	12.1	Recomendaciones para un almacenamiento a Largo Plazo	104
12	12.2 Dog	Necomendaciones para un annacenamiento a Eargo 1 120	107
13.	Reso	Jucion de Froblemas	,
14.	Apé	ndice A Especificaciones del YSI 556 MPS	111
15.	Apé	ndice B Accesorios del Instrumento	112
16.	Apé	ndice C Advertencias de la Comisión Federal de Comunicaciones	113
17.	Apé	ndice D Salud y Seguridad	114
18.	Apé	ndice E Servicio al Cliente	118
	18.1	Pedidos y Servicio Técnico	
	18.2	Información de Servicio	
	18.3	Instrucciones de limpieza	
- /			

18.4	Procedimiento para el Empaque	
18.5 19. Apé	ndice F Instalación del inductor	120
20. Apé	ndice G EcoWatch	124
20.1	Como Instalar el EcoWatch para Windows	
20.2	Tutoría del EcoWatch	
21. Apé	ndice H Información Almacenada sobre Calibraciones	136
21.1	Ver un archivo de Calibración almacenado (.glp)	
21.2	Transferencia del archivo de Calibración almacenado (.glp)	
21.3	Significado del Archivo de Calibración (.glp)	

1. Seguridad

1.1 Información de seguridad general

Lea atentamente toda la información de seguridad en este manual antes de usar el Sistema Multi-Sonda YSI 556 (MPS). Los reactivos que son usados para calibrar y probar este instrumento pueden ser perjudiciales para su salud. Por favor dedique un momento para leer el *Apéndice D Salud y Seguridad*.

/ ADVERTENCIA

Se incluyen en este manual advertencias sobre el mal uso del instrumento cuando este pueda resultar en muerte o serias lesiones para el usuario.

A PRECAUCION

Se utilizan alertas de "Precaución" cuando el mal uso del instrumento pueda resultar en lesiones leves o serias a la persona o al equipo.

Es de vital importancia la regla de seguridad para el uso del YSI 556 MPS que especifica que este instrumento se debe utilizar únicamente para finalidades documentadas en este manual. Esta regla es particularmente importante ya que la batería recargable del YSI 6117 contiene Hidrato de Níquel (NiMH). El usuario debe asegurarse en leer todas las advertencias de seguridad listadas antes de usar el instrumento.

\land Baterías

Este instrumento es alimentado por baterías alcalinas o por baterías opcionales de metal hidruro de níquel, que el usuario debe quitar y eliminar cuando las baterías ya no enciendan el instrumento. Los requisitos de descarte de baterías usadas varían por país y región, y se espera que los usuarios entiendan y cumplan con las exigencias de descarte de baterías según su localización específica.

La tarjeta de circuito en este instrumento contiene batería de dióxido de manganeso de litio "de moneda" que debe estar en su lugar para garantizar la continuidad del energía de los dispositivos de memoria en la tarjeta. Esta

YSI Incorporated

YSI 556 MPS

batería no es reemplazable o reparable por el usuario. Cuando sea necesario, un centro de servicio autorizado de YSI cambiará esta batería correctamente y eliminará la usada, de acuerdo a las políticas de servicio y reparación.

∕!∖YSI 6117 Información de Seguridad sobre la batería recargable.

⚠ Restricciones en el uso

- 1. No colocar nunca el pack de la batería cerca del fuego.
- No desmontar bajo ningún motivo el pack de la batería del YSI 6117.
- 3. No ejercer presión sobre ninguno de los componentes electrónicos de las baterías que se encuentran dentro del pack. Ejercer presión tanto sobre el circuito electrónico como sobre las baterías puede resultar en la invalidación de la garantía y de la eficacia del funcionamiento del sistema, pero lo que es más importante , puede causar peligros importantes para la salud que pueden resultar del sobrecargado, tales como el sobrecalentamiento, entrada de gas y perdida del electrolito corrosivo.
- 4. No cargue la batería fuera de los límites del intervalo de temperatura 0-40°C
- 5. No use o exponga la batería a altas temperaturas, tales como la luz directa del sol, en coches durante el tiempo muy caluroso o directamente en frente de calefactores.
- 6. No exponer la batería a la humedad ni permitir que los terminales estén húmedos.
- 7. Evitar el golpeo o caída de la batería. Si la batería tiene signos de haber sido sustancialmente dañada por estas acciones o por el mal funcionamiento a causa de un impacto o caída, el usuario no debe intentar reparar la unidad por sí solo. Al contrario, debe contactar el servicio al cliente de YSI. Referencia *Apéndice E: Servicio al Cliente..*
- 8. Si se quita la batería YSI 556 MPS, no depositarla en bolsillos u otros emplazamientos donde objetos metálicos, tales como llaves pueden provocar un cortocircuito entre las terminales positivas y negativas.

Seguridad Precauciones para los usuarios con niños pequeños.

Mantenga la batería fuera del alcance de los bebes y niños pequeños.

Avisos de Peligro- El mal uso crea una FUERTE posibilidad de muerte o de daños serios.

EL HECHO DE HACER CASO OMISO A LAS SIGUIENTES ADVERTENCIAS PUEDE RESULTAR EN EL DERRAMAMIENTO DE LÍQUIDO DE BATERIA, GENERACION DE CALOR, EXPLOSION Y SERIAS LESIONES PERSONALES.

- 1. No exponer jamás la batería al fuego o al calor.
- 2. Nunca exponer las terminales positivas y negativas de la batería cerca o conectadas con materiales electrónicos conductores. Cuando la batería ha sido quitada del YSI 556 MPS, almacenarla en una bolsa de plástico fuerte para evitar el contacto accidental de las terminales.
- 3. Nunca exponer la batería o aprisionarla con cualquier componente dentro del pack de la batería. El pack está equipado con una serie de dispositivos de seguridad. Una desactivación de cualquiera de estos dispositivos puede causar un gran peligro para el usuario.
- 4. Las baterías de NiMH contienen una solución alcalina muy fuerte (electrolito) La solución alcalina es extremadamente corrosiva y puede causar serios daños en la piel u otros tejidos. Si un fluido de la batería entra en contacto con los ojos del usuario, inmediatamente aplicar agua limpia y consultar a un medico inmediatamente. La solución alcalina puede dañar los ojos y resultar en una perdida permanente de la vista.

Advertencias – El mal uso crea la posibilidad de muerte o graves lesiones.

- 1. No permitir que la batería entre en contacto con agua dulce, agua marina u otros reactivos oxidantes que puedan causar oxidación y resultar en una generación de calor. Si la batería llega a estar oxidada, la entrada de gas puede que no opere y cause una explosión.
- 2. Si un electrolito de la batería entra en contacto con la piel o la ropa, lavar fuertemente el área afectada con agua limpia. El líquido de la batería puede irritar la piel.

Precaución – El mal uso crea la posibilidad de leves o serias lesiones o daños al equipo.

- 1. No golpee ni deje caer la batería. Si se sospecha de impacto considerable, contacte Servicio al Cliente. Referencia: *Apéndice E: Servicio al Cliente*.
- 2. Mantenga la batería fuera del contacto de los bebes o de los niños pequeños.
- 3. Mantenga la temperatura de la batería entre los -20° y los 30° C.
- 4. Antes de usar la batería, asegúrese de leer atentamente todo el manual y todas sus advertencias. Después guarde toda esta información para futuras consultas.

YSI 616 Cargador para el Encendedor de Cigarros-Información de la seguridad

- Esta sección contiene instrucciones muy importantes sobre la seguridad y las instrucciones de funcionamiento del cargador para encendedor de cigarros del YSI 556 MPS (YSI 616; RadioShack Number 270-1533E). ASEGURESE DE GUARDAR ESTAS INSTRUCCIONES.
- 2. Antes de usar el cargador para el encendedor YSI 616, lea todas las instrucciones y advertencias que se establecen en el cargador de la batería, el pack de la batería y en el propio YSI 556 MPS.
- 3. Cargue la batería del YSI 6117 con el encendedor para cigarros YSI 616 SOLAMENTE cuando el YSI 6117 este instalado en el YSI 556 MPS.
- 4. No exponer el cargador a la lluvia, la humedad ni la nieve.
- 5. El uso de accesorios no recomendados ni vendidos por el fabricante puede resultar en riesgo de fuego, shock eléctrico, o lesiones personales.
- 6. Para reducir el riesgo de daño tanto al encendedor como al cable, halar del encendedor mejor que del cable cuando desee desconectarlo.
- 7. Asegúrese de que el cable este bien situado para no pisar o tropezar sobre él, ya que podría causar daños. No haga funcionar el cargador cuando su cable este dañado- cámbielo inmediatamente.
- 8. No encender el cargador si este ha recibido un fuerte golpe, se ha dejado caer o ha sido dañado de otra forma. Contactar el Servicio al Cliente. Referencia: *Apéndice E: Servicio al Cliente*.
- 9. No desmonte el cargador u otras piezas más que para cambiar el fusible tal y como se le indica. Cambie esa pieza o mándelo al Servicio técnico

Sección 1 de YSI si necesita ser reparado (referencia: *Apéndice E Servicio al Cliente*). Un incorrecto montaje de las piezas puede causar un riesgo de shock o fuego.

10. Para reducir el riesgo de cortocircuito, desenchufar el cargador antes de seguir algún procedimiento de limpieza o mantenimiento. Reducir los controles no reduce este riesgo.

/Información de seguridad sobre la pérdida de agua del YSI 556 MPS

El YSI 556 MPS ha sido probado para seguir el criterio del IP67, es decir, inmersión en un metro de agua durante 30 minutos sin ninguna fuga de líquido ni en compartimento de la batería ni en la carcasa principal. Sin embargo, si este instrumento se sumerge durante periodos de tiempo que excedan los 30 minutos, puede ocurrir una fuga de agua, y como consecuencia un daño en las baterías, en el circuito del pack de la batería recargable y en la electrónica en primera instancia

Si se observa una fuga de liquido en el compartimento de la batería cuando se están usando células alcalinas C, quite las baterías, deposítelas en un lugar adecuado y seque completamente el compartimento de la batería haciendo uso de aire comprimido. Si se observa corrosión en las terminales de la batería, por favor, contacte Servicio al Cliente de YSI para recibir instrucciones. Referencia: *Apéndice E Servicio al Cliente*.

Si se observa fuga de líquido durante el uso de la batería recargable del YSI 6117 quite todo el conjunto de la batería y déjelo secar. Envíe el pack de la batería al Servicio Técnico de YSI para evaluación del posible daño. Finalmente seque el compartimento de la batería completamente, si es posible con aire comprimido. Si se observa corrosión en los terminales de la batería, contacte el Servicio al Cliente para recibir instrucciones. Referencia: *Apéndice E Servicio al Cliente*.

PRECAUCION: Si el pack de batería recargable ha entrado en contacto con agua, no volver a usarlo hasta que no haya sido evaluado por el Servicio Técnico de YSI. (Referencia: *Apéndice E Servicio al Cliente*) Hacer caso omiso a esto puede causar lesiones graves al usuario.

Si se sospecha que hay una fuga de agua en la cavidad de la caja, quite las baterías inmediatamente y mande el instrumento al Servicio Técnico para una evaluación del daño causado. Referencia: *Apéndice E Servicio al Cliente*..

PRECAUCION: Bajo ninguna circunstancia el usuario ha de abrir la caja principal.

2. Información General

2.1 Descripción

El resistente y confiable YSI 556 MPS (Multi-Probe System) combina la versatilidad de una equipo de mano fácil de usar con toda la funcionalidad de un equipo multiparametrico. Características esenciales son su resistencia al agua y una cobertura resistente a los golpes. El YSI 556 MPS mide simultáneamente oxigeno disuelto, conductividad, temperatura, y opcionalmente pH u ORP. Un teclado del estilo de un teléfono móvil y una excelente visualización hacen de este instrumento un aparato fácil de manejar. El YSI 556 MPS es compatible con el YSI EcoWatchTM para Windows**.

El YSI 556 MPS guarda datos de calibración para atenerse a las normas de Good Laboratory Practice (GLP) que ayudan a asegurar el seguimiento de métodos de calidad/control de calidad. La vida útil de la batería se visualiza con un indicador de energía, y el usuario puede elegir el uso de baterías alcalinas estándar o un conjunto de baterías recargables

La memoria 1.5 MB puede almacenar más de 49,000 sets de datos. Otras opciones incluyen célula de flujo y barómetro. El barómetro interno puede ser calibrado y visualizado a la vez que otros dados, o ser usados en calibración de oxigeno disuelto y ser descargados a la memoria para comparar cambios en la presión barométrica.

Características

- Resistente al agua satisface las especificaciones IP67.
- Modulo de electrodos de campo sustituibles. Sensores de oxigeno disuelto, pH o de pH/ORP
- Compatible con el programa de análisis de datos EcowatchTM para Windows.
- Ayuda a cumplir los estándares del Good Laboratory Practice Standards (GLP)
- Opción de una membrana de material DO para diferentes aplicaciones.
- Fácil de manejar. Cartuchos de membranas DO fáciles de cambiar.
- Software fácilmente actualizable en la página web de YSI.
- Tres años de garantía en el instrumento. Un año en cables/ sensores
- Cables de longitud de de 4, 10 y 20 m disponibles.

YSI Incorporated

- Almacena más de 49,000 conjuntos de datos. Tiempo y fecha fijados.
- Visualización automática del contraste de temperatura compensado.
- Barómetro opcional
- Batería recargable o uso de pilas alcalinas estándar opcionales.

2.2 Desempacar el Instrumento

- **1.** Saque el instrumento de la caja. Fíjese en que la unidad de prueba y los sensores están envueltos en una caja aparte y que se desempacaran mas tarde en la sección 2.2. Desempacando la unidad de prueba.
- 2. NOTA: No se deshaga de ninguna pieza o accesorio.
- **3.** Use la lista de empaque para asegurarse de que se han incluido todos los elementos.
- 4. Eche un vistazo a todos los componentes por posibles daños.

NOTA: Si falta algún elemento o hay algo dañado, contacte el servicio técnico de YSI inmediatamente. Referencia: *Apéndice E: Servicio al Cliente* o visite www.ysi.com.

2.3 Características del Sistema Multi-Sonda YSI 556

Imagen 2.1 Parte delantera del YSI 556 MPS

2.4 Baterías

2.4.1 Vida de la batería

Pilas Alcalinas Estándar

Con la configuración estándar de 4 pilas alcalinas C, el YSI 556 MPS funcionara continuamente durante 180 horas. Asumiendo la duración de un uso al tomar muestras de tres horas en un día normal, las pilas alcalinas duraran aproximadamente 60 días.

Opcional: Batería recargable

Cuando está totalmente cargada, la batería recargable proporcionara aproximadamente 50 horas de duración.

2.4.2 Como insertar las 4 pilas C

PRECAUCION: Instale las pilas adecuadamente para evitar daño al instrumento.

- **1.** Afloje los cuatro tornillos de la tapa de la batería en la parte posterior del instrumento usando un destornillador.
- **2.** Quite la tapa.
- **3.** Inserte cuatro pilas C entre los clips siguiendo las etiquetas de los polos (+ y-) al fondo del compartimento de la batería.
- **4.** Revise las juntas para conseguir una colocación adecuada de la tapa de la batería.
- **5.** Vuelva a colocar la tapa y apriete los 4 tornillos de forma uniforme y segura

NOTA: NO SOBRE AJUSTAR LOS TORNILLOS PARA EVITAR DAÑO A LA ROSCA.

2.4.3 Como Instalar la Batería Recargable Opcional

Imagen 2.4 Como Instalarla batería

PRECAUCION:

Lea todas las instrucciones y advertencias que aparecen en la batería antes de usar el pack de la batería.

- **1.** Afloje los cuatro tornillos de la tapa de la batería en la parte posterior del instrumento usando un destornillador.
- **2.** Quite la tapa de la batería y apártela para recolocarla seguidamente. Quite las pilas si están instaladas.
- 3. Revise las juntas para colocar correctamente la batería y la tapa.
- **4.** Instale la batería y la tapa. Apriete los cuatro tornillos firmemente.

NOTA: No sobre atornillar.

2.4.4 Como cargar la batería Recargable (Opcional)

Imagen 2.5 Como cargar la batería

No usar o exponer esta batería a temperaturas extremas tales como la luz directa del sol, en automóviles durante el tiempo caluroso o cerca de calefacciones.

- **1.** Instale la batería en el instrumento según lo descrito en la sección 2.4.3. Como insertar la batería recargable.
- **2.** Conecte el cable adaptador del cargador (YSI 6119) al instrumento.

NOTA: El transformador para ser utilizado en Estados Unidos o Canadá puede encontrado en el *Apéndice B Accesorios del Instrumento*.

3. Inserte el tubo conector del transformador en el tubo del cable adaptador.

PRECAUCION: No cargar la batería continuamente más de 48 horas.

PRECAUCION: No dejar caer o exponerla al agua.

PRECAUCION: No cargar la batería a temperaturas menores de 0°C o mayores de 40°C.

4. Enchufe el transformador en un tomacorriente AC durante aproximadamente 2 horas para obtener de un 80% a un 90% y durante 6 horas para obtener una carga completa.

NOTA: La batería puede ser recargada tanto si el instrumento esta encendido como si está apagado.

2.4.5 Como almacenar la batería

Quite la batería del instrumento cuando este no vaya a ser usado por largos periodos de tiempo para evitar descarga de la batería.

Deje la batería en una bolsa de plástico fuerte para evitar el contacto de las terminales. Guardar a una temperatura de entre 20 y 30°C.

2.4.6 Cargador para encendedor de cigarros

PRECAUCION: Lea todas las advertencias e instrucciones que aparecen en el cargador antes de utilizarlo.

PRECAUCION: Use el cargador para encendedor de cigarros solo cuando la batería recargable este metida dentro del instrumento.

PRECAUCION: No maltrate el cargador. No exponerlo a la humedad.

- **1.** Enchufe el tubo conector del cargador del encendedor de cigarros dentro del acople de la terminación del cable YSI 6119.
- **2.** Enchufe la terminal MS-19 del Cable adaptador del cargador del YSI 6119 al instrumento.
- **3.** Haga una de estas modificaciones a la otra parte del cargador:

Aparte la parte redonda del enchufe para usar este instrumento en un vehículo americano o japonés.

American and Japanese Vehicles

Adapter

Imagen 2.1 Uso del adaptador de enchufes del cargador

Dejar el aro adaptador en el enchufe en una posición de tal forma que la ranura del aro adaptador este en línea con el resorte del enchufe para usar el aparato en un vehículo europeo.

Imagen 2.2 Uso del Adaptador para el cargador Europeo

NOTA: Si el cargador deja de funcionar correctamente, refiérase a la Sección 13 Resolución de problemas.

2.5 Encendido

Presione momentáneamente el botón de encendido/apagado de la esquina superior izquierda del teclado para encender o apagar el instrumento. Imagen 2.1 Parte delantera del YSI 556 MPS.

2.6 Como establecer la visualización de Contraste de Pantalla

La visualización de contraste de pantalla compensa automáticamente los cambios de temperatura. Sin embargo, bajo condiciones de temperatura extremas puede que desee optimizar esta visualización mediante ajustes manuales según se le indica a continuación:

- **1.** Presione y mantenga apretada la tecla de la luz de fondo que se encuentra en la esquina superior derecha del teclado y presione la flecha de "arriba" para incrementar (oscurecer) el contraste.
- **2.** Presione y mantenga apretada la tecla de la luz de fondo que se encuentra en la esquina superior derecha del teclado y presione la flecha de "abajo" para disminuir (aclarar) el contraste.

2.7 Luz de fondo

Presione momentáneamente la tecla de luz de fondo que se encuentra en la esquina superior derecha del teclado para encender o apagar la luz de fondo. Ver Imagen 2.1 Parte delantera del YSI 556 MPS.

NOTA: La luz de fondo se apaga automáticamente después de dos minutos sin uso.

2.8 Características generales de la pantalla

Imagen 2.6 Menú Principal de la pantalla

2.9 Uso del teclado

Imagen 2.7 Características del teclado

TECLA	LETRA/NUMERO
1	1
2	ABC2abc3
3	DEF3def3
4	GHI4ghi4
5	JKL5jkl5
6	MNO6mno6
7	PQRS7pqrs7
8	TUV8tuv8
9	WXYZ9wxyz9
0	0

Imagen 2.8 Teclado de letras y números

1. Ver Imagen 2.8 y presione la tecla deseada repetidamente hasta que la letra o numero deseado aparezca en la pantalla.

NOTA: Presione la tecla repetidamente en rápida sucesión para llegar al número o letra deseado. Si usted para más de un segundo, el cursor automáticamente se moverá al siguiente espacio para la siguiente entrada.

EJEMPLO 1: Presione la tecla del **6** *una vez* y *suelte* para visualizar la letra "M."

EJEMPLO 2: Presione la tecla del **6** *cuatro veces* y *suelte* para visualizar el numero "6."

EJEMPLO 3: Presione la tecla del 6 *cinco veces* y *suelte* para visualizar la letra "m."

- **2.** Presione la flecha de la izquierda para volver hacia atrás y volver a introducir un número o letra que necesite ser cambiado.
- 3. Presione la tecla de Enter cuando haya finalizado la entrada.

NOTA: El software del instrumento permite solo entradas numéricas en muchas ocasiones, tales como la fijación de la hora o la entrada de parámetros de calibración.

2.10 Reseteado del instrumento

El YSI 556 MPS se caracteriza por un sofisticado software que permite operaciones libres de problemas. Sin embargo, como todos los paquetes de software de alta capacidad, siempre es posible que el usuario encuentre situaciones en las que el instrumento no responde a las entradas del teclado. Si esto ocurre, se puede restablecer el funcionamiento quitando y volviendo a instalar la batería. Simplemente quite las pilas C o la batería recargable del compartimento de la batería, espere 30 segundos y vuelva a poner en su sitio las baterías. Ver sección *Error! Reference source not found.* para la sustitución o reinstalación de la batería.

2.11 Organigrama

3. Unidad de Sonda

3.1 Introducción

La unidad de sonda YSI 5563 se usa para medir oxigeno disuelto, temperatura, conductividad, y opcionalmente pH u ORP. La unidad de sonda es resistente, con sensores insertos en una pesada cubierta y de un peso de sumersión adicional. El cable de 4, 10 o 20 metros está conectado directamente al cuerpo de la unidad de sonda haciéndola resistente al agua. Un conector MS-19 al final del cable hace del YSI 5563 perfectamente compatible con el Sistema Multi-Sonda YSI 556.

3.2 Desempacar la Unidad de Sonda

1. Saque la unidad de sonda YSI 5563 de la caja de embalaje.

NOTA: No pierda ningún accesorio o elemento.

- **2.** Use la lista de embalaje para asegurarse de que se encuentran todos los elementos.
- 3. Revise todos los componentes por posible daño.

NOTA: Si echa en falta algún elemento o alguna parte está dañada, contacte con el Servicio Técnico inmediatamente. Referencia: *Apéndice E Servicio al Cliente* o visite www.ysi.com.

3.3 Características de la unidad de sonda YSI 5563

3.4 Preparación de la Unidad de Sonda

Para preparar la Unidad de Sonda para Calibración y Funcionamiento, necesita instalar los sensores en los conectores de la mampara de la unidad de Prueba. Además de la instalación de los sensores, es necesario instalar una nueva membrana de Oxigeno Disuelto.

3.4.1 Instalación del Sensor

Siempre que desee instalar, quitar o sustituir un sensor, es extremadamente importante que toda la Unidad de Sonda y todos los sensores estén totalmente secos antes de quitar un sensor o una tapa del sensor. Una vez quitado el sensor o la tapa, examine la entrada dentro del sensor de la unidad de sonda. Si se observa alguna humedad, use aire comprimido para secar completamente la entrada. Si esta corroída, envíe la unidad de Sonda a su distribuidor o directamente al Servicio al Cliente. Referencia *Apéndice E Servicio al Cliente*.

Instalación del Sensor de la Conductividad/Temperatura y del pH, pH/ORP

- **1.** Destornille y quite la tapa del sensor de la sonda.
- **2.** Usando la herramienta proporcionada en el kit de mantenimiento del YSI 5511, destornille y quite las tuercas del sensor.

Imagen 3.2 Como quitar la tapa

3. Localice las salidas con el conector que corresponda a cada sensor que va a ser instalado.

Imagen 3.3 Entrada de cada sensor

4. Aplique una fina capa de lubricante de anillas (proporcionado en el kit de mantenimiento del YSI 5511) a las anillas en la parte del conector del sensor (ver Imagen 3.3 Lubricación de la anilla).

Imagen 3.4 Lubricación de la anilla

PRECAUCION: Asegúrese de que no hay ningún contaminante entre la anilla y el sensor. Si hay contaminantes debajo de la anilla puede causar un goteo de la anilla.

- **5.** Asegúrese de que la entrada al sensor está libre de toda humedad y a continuación inserte el sensor en la entrada correcta. Ligeramente gire el sensor hasta que se alineen los dos conectores.
- **6.** Con los conectores alineados, atornille las tuercas del sensor usando la herramienta de instalación del sensor.

Imagen 3.5 Instalación del sensor

PRECAUCION: No cruce el cable del tornillo del sensor. Apriete el tornillo hasta que se alinee con la cara de la cubierta de la unidad de sonda. No pasar de rosca.

Imagen 3.6 Asentamiento de la cubierta

YSI 556 MPS

- 7. Repita los pasos 3-6 para los otros sensores.
- **8.** Vuelva a colocar la cubierta del sensor.

Instalación del Sensor de Oxigeno Disuelto

El YSI 5563 viene con el sensor de Oxigeno Disuelto ya instalado. Refiérase a la Sección *11. Sustitución del Sensor de Oxigeno Disuelto* para instrucciones sobre la instalación del Kit de Oxigeno Disuelto Sustituible YSI 559.

3.4.2 Selección de los cartuchos de Membrana

El YSI 5563 está equipado con un kit YSI 5909 que contiene cartuchos de membrana hechas de 2 mil* de polietileno (PE), un material que es ideal para la mayoría de las aplicaciones 556. Sin embargo, YSI también ofrece una membrana hecha de otros dos materiales (1 mil de polietileno y 1 mil de Teflón) que puede que otros usuarios prefieran. Todas las membranas disponibles para el sistema 556/5563 proporcionan una precisión similar si se usan correctamente. La diferencia entre los dos grosores de PE se encuentra en la preferencia o no a la dependencia del flujo y del tiempo de respuesta como se describe seguidamente. Se ofrece el Teflón porque muchos usuarios puede que prefieran continuar usando la membrana de material tradicional usada por YSI. Para evitar confusión, los tapones de las membranas están codificados según se describe a continuación:

1 mil Teflón – Tapones Negros (Kit = YSI 5906) 1 mil Polietileno (PE) – Tapones Amarillos (Kit = YSI 5908) 2 mil Polietileno (PE) – Tapones Azules (Kit = YSI 5909)

Las membranas de 1 mil de Teflón ofrecerán resultados consistentes y confiables para la mayoría de las aplicaciones de Oxigeno Disuelto. Las de 1 mil de PE ofrecerán una respuesta mucho más rápida de Oxigeno Disuelto (siempre que el filtro de datos 556 este colocado correctamente como indican las Secciones 10.2 y 10.3.1) mientras que las lecturas son significativamente menos dependientes del flujo que las de 1 mil de Teflón. Finalmente, las de 2 mil de PE mostraran una larga reducción en cuanto la dependencia de flujo comparados con las de 1 mil de Teflón mientras que no hay un incremento significativo en el tiempo de respuesta.

*Mil en este caso refiere a milésimas de pulgada de grosor
IMPORTANTE: No importa la membrana que usted elija, podrá confirmar su selección en el software del 556 en el menú del sensor, tal y como describe la Sección *Sensores*.

3.4.3 Instalación del Cartucho de la Membrana

NOTA: El sensor de Oxigeno Disuelto YSI 5563 (ya instalado en la unidad de Sonda) se transporta seco. Se ha instalado una membrana de transporte para proteger el electrodo. Se debe instalar una nueva membrana antes del primer uso.

- 1. Desatornille y saque la protección del sensor.
- 2. Desatornille, saque y deshágase de la anterior membrana.
- **3.** Enjuague cuidadosamente la punta del sensor con agua destilada.
- **4.** Prepare el electrolito según las directrices en el bote de solución de electrolito.
- **5.** Sostenga la nueva membrana y llénela al menos hasta la mitad con la solución del electrolito. Golpee ligeramente la membrana con los dedos para evacuar cualquier burbuja de aire que pueda estar presente en la solución de electrolito
- **6.** Atornille moderadamente apretada la membrana en el sensor. Debe desbordarse una pequeña cantidad de electrolito.

PRECAUCION: No toque la superficie de la membrana.

7. Apriete la protección del sensor moderadamente apretada.

3.5 Recipiente de Transporte/ Calibración

La unidad de sonda YSI 5563 viene provista de una recipiente especial para el transporte/calibración. Este envase es un recipiente ideal para calibración de distintos sensores, minimizando la cantidad de solución necesitada. Referencia Sección *6 Calibración*.

3.5.1 Instalación del Recipiente de Transporte/Calibración

- 1. Quite la protección del sensor, si todavía se encuentra instalada.
- **2.** Asegúrese de que está instalada una anilla en la ranura en la terminación estriada del cuerpo de la unidad de sonda.
- **3.** Enrosque el recipiente para transporte/calibración en la terminación estriada de la unidad de sonda y apriete de forma segura.

NOTA: No sobre apriete ya que podría causar daño a la rosca

Imagen 3.7 Instalación del recipiente para el Transporte/Calibrado

3.6 Conexión del Instrumento/ Cable

Una el cable al instrumento como se le indica seguidamente:

- **1.** Alinear los pins y ranuras del cable con los agujeros y las hendiduras del cable conector al fondo del instrumento YSI 556. Ver *Imagen 2.1 Parte delantera del YSI 556 MPS*.
- **2.** Sujetando firmemente el cable contra el conector, gire en el sentido de las agujas del reloj hasta que se encaje.

Quite el cable del instrumento girando el cable conector en el sentido de las agujas del reloj hasta que el cable se suelte del instrumento.

4. Sensores

La pantalla del instrumento permite al usuario activar o desactivar cada uno de los sensores y seleccionar que material de membrana se usara para el sensor de oxigeno disuelto. Los sensores desactivados no se visualizaran en la pantalla a tiempo real así como tampoco la entrada a archivos.

- **1.** Presione el botón de encendido/apagado para visualizar la pantalla.
- **2.** Presione la tecla de **Escape** para visualizar en la pantalla el menú principal.

Menu principal
Ejecutar
Informe
Sensor
Calibrado
Archivo
Cargando configuracion
Configuracion del Sistema
745.9mmHg 12/03/2003 13:57:16 ≝

Imagen 4.1 Pantalla del menú principal

- **3.** Use las flechas para seleccionar el **Sensor**.
- **4.** Presione la tecla de **Enter** para visualizar los sensores activados.

Imagen 4.2 Sensores Activados antes de la selección de la membrana del Oxigeno Disuelto

Un punto negro a la izquierda del sensor indica que el sensor esta activado. Los sensores que tenga un círculo en blanco estarán desactivados.

Utilizando las flechas, seleccione la entrada "DO None" como ha visto en la anterior imagen y presione **Enter** para visualizar la elección de la membrana. Consultar la *Apéndice E Servicio al cliente* para recibir información sobre las ventajas de cada tipo de material de membrana. Las membranas de tapón azul de 2 mil de polietileno (PE) fueron incluidas con su YSI 5563 y son la mejor opción para la mayoría de las aplicaciones del 556.

Imagen 4.3 Visualización de selección de membrana

Seleccione la membrana escogida - en este ejemplo, 1 mil de Teflón - y presione Enter para activar su selección con un punto a la izquierda de la

pantalla. A continuación presione **Escape** para volver al menú del Sensor que ahora muestra la selección de la membrana de oxigeno disuelto.

Senso activado		
O Temperatura		
<pre> ©Conductividad </pre>		
●02 1 mil Teflon (Negro)		
⊚рН		
<pre>@redox</pre>		
746.0mmHg 12/03/2003 14:02:04 ≝		

Imagen 4.4 Sensores Activados después de la selección de la membrana de oxigeno disuelto

NOTA: El sensor Temperatura no puede ser desactivado. La mayoría de los otros sensores requieren compensación de temperatura para obtener lecturas precisas. Además, el sensor de conductividad puede ser activado para obtener lecturas precisas de oxigeno disuelto en mg/L.

- **5.** Use las flechas para seleccionar el sensor que usted desee cambiar, después pulse **Enter** para activarlo o desactivarlo.
- **6.** Repita el paso 5 para cada uno de los sensores que usted desee cambiar.
- **7.** Presione la tecla de **Escape** para volver a la pantalla del menú principal.

5. Informe

La pantalla del estado permite al usuario seleccionar que parámetros y unidades de muestra el YSI 556 MPS visualizara en la pantalla. No determina que parámetros están vinculados en la memoria. Referencia Sección *Sensores*.

- **1.** Presione el botón de encendido/apagado para visualizar la pantalla presente.
- 2. Presione la tecla Escape para visualizar el menú principal.

Menu principal
Ejecutar
Informe
Sensor
Calibrado
Archivo
Cargando configuracion
Configuracion del Sistema
746.0mmHg 12/03/2003 14:02:51

Imagen 5.1 Menu Principal

- **3.** Use las flechas para resaltar la elección del Informe.
- 4. Presione la tecla de Enter para visualizar el informe.

Imagen 5.2 Pantalla del informe

NOTA: Un punto negro a la izquierda del parámetro indica que el parámetro esta seleccionado para visualizarse. Los parámetros que presenten un círculo en blanco no se visualizaran.

NOTA: Puede que usted tenga que deslizarse hasta el final de la pantalla para ver todos los parámetros.

- **5.** Use las flechas para seleccionar el parámetro que desee cambiar, después presione **Enter**. Si usted no puede encontrar el parámetro que desea, incluso llegando hasta el final de la pantalla, el sensor usado para ese parámetro esta desactivado. Referencia Sección *Sensores*.
- **6.** Si usted selecciona Temperatura, Conductancia especifica, Conductividad, Resistividad o Sólidos Disueltos Totales aparecerán las Unidades correspondientes en la pantalla.

Sele	ccionar	unidades——	
	10		
⊙Temp (;		
OTemp B	7		
OTemp H	c		
_			
12/03/2003	14:05:03	745.9mmHg ≝	

Imagen 5.3 Pantalla de los elementos

7. Use las flechas para seleccionar las unidades deseadas, después pulse Enter para volver a la pantalla del estado.

Si usted selecciono Salinidad, Oxigeno Disuelto %, Oxigeno disuelto mg/L, pH, pH mv u ORP mv, el punto de la selección simplemente mostrara activado o desactivado.

8. Repita los pasos 5 y 6 para cada parámetro que desee cambiar.

NOTA: Conductancia Específica (conductividad con compensación de temperatura) es marcada con una pequeña 'c' después de las unidades de medida.

Todos los parámetros pueden ser activados al mismo tiempo.

Ejecuta Menu	ar
Cargar una muestra Comenzar la carga 22 000	95.4
0.00	8.17 ⁰ ²⁹
_9∩8	8.30 _₽ н -65 6-ч н
0.00 TDS½	210.4 _{ORP}
U.UUSal	
12/03/2003 14:06:13	/45.9mmig

Imagen 5.4 Visualización de todos los parámetros

9. Presione Escape para volver a la pantalla del menú principal.

6. Calibración

Todos los sensores, excepto el de temperatura, requieren calibración periódica para asegurar el buen funcionamiento del instrumento. Usted encontrara procedimientos específicos de calibración para todos los sensores que requieran calibración en las siguientes secciones. Si usted no tiene instalado uno de los sensores listados, salte esa sección y continúe con el siguiente sensor hasta que la calibración se complete.

PRECAUCION: Los reactivos usados para calibración y revisión de este instrumento pueden ser peligrosos para la salud. Dedique un momento a revisar *Apéndice D Salud y Seguridad*. Es posible que algunas soluciones estándar calibrado requieran un manejo especial.

6.1 Preparación para Calibración

6.1.1 Envases necesarios para calibrar la Unidad de Sonda

La recipiente para el transporte/calibrado que se incluye con la unidad de sonda sirve como cámara para todos los calibrados y minimiza el volumen de reactivos de calibrado requeridos.

En sustitución de la recipiente de transporte/calibrado, puede usar un envase de cristal de laboratorio para efectuar las calibraciones. Si usted no usa la recipiente de transporte/calibrado diseñada para la unidad de sonda, tenga en cuenta las siguientes advertencias:

- ✓ Efectúe todas las calibraciones con la protección del Sensor de Sondas instalada. Esto protege los sensores de posibles daños físicos.
- ✓ Use un soporte circular y plano para asegurar que no se caiga el cuerpo de la unidad de sonda. La mayoría de las probetas tiene fondos convexos.
- ✓ Asegúrese de que todos los sensores estén sumergidos en soluciones de calibración. Muchas calibraciones dependen de las lecturas de otros sensores (por ejemplo, el sensor temperatura). El orificio en el lado del sensor de conductividad debe estar totalmente sumergido en solución de calibración de conductividad al momento de calibrar.

6.1.2 Consejos para Calibración

- Si usa la recipiente de Transporte/Calibración para el calibrar Oxigeno Disuelto, asegúrese de aflojar la recipiente un poco para permitir equilibrio de presión dentro y fuera de la recipiente. La calibración de oxigeno disuelto es en aire saturado de agua.
- **2.** Siempre calibre con buffer 7 primero, independientemente si ejecuta calibración a 1, 2 o 3 puntos.
- **3.** La clave para una buena calibración es asegurar que todos los sensores estén completamente sumergidos en las soluciones estándar de calibración. Use los volúmenes recomendados.
- **4.** Para conseguir una máxima precisión, use una cantidad pequeña de solución de calibración previamente usada para un enjuague del sensor. Puede guardar soluciones de calibración anteriormente usadas para este propósito.
- **5.** Llene una cubeta con agua a temperatura ambiente para enjuagar los sensores antes de sumergirlos en la siguiente solución de calibración. Tenga a mano una servilleta de papel absorbente o algodones para secar completamente los sensores entre enjuagues. Escurra el exceso de agua, especialmente cuando la protección de la unidad de sonda este instalada. Seque el exterior de la unidad de sonda y de la protección del sensor de sonda. Asegúrese de que la unidad este seca, esto reduce la contaminación de las soluciones de calibración y aumenta la precisión de calibración.
- **6.** Si usted está usando una probeta para calibrar, no necesita quitar la protección del sensor de sonda para enjuagar y secar los sensores entre soluciones de calibración. La falta de precisión resultante simplemente enjuagar los compartimentos y secar el exterior de la protección es mínima.
- 7. Si usted está usando una probeta de laboratorio, saque el peso de acero inoxidable del fondo de la protección del sensor de sonda girando el peso en la dirección de las agujas del reloj. Cuando se quita el peso las soluciones de calibración tienen acceso a los sensores sin desplazar demasiada agua. Esto

también reduce la cantidad de líquido que se transporta entre calibraciones.

8. Asegúrese de que los tapones estén instalados en todas las entradas / orificios para sensores que no tengan sensor instalado. Es extremadamente importante mantener secos esos conectores eléctricos.

6.1.3 Volúmenes Recomendados

Siga las instrucciones siguientes para usar la recipiente de transporte/calibración para operaciones de calibración.

✓ Asegúrese de que una anilla este instalada en la ranura de la recipiente de transporte/calibración del envase del fondo, y de que el envase del fondo este bien apretado.

NOTA: No sobre apretar ya que puede causar daños a las roscas

- ✓ Saque la protección del sensor de la sonda, si está instalada.
- ✓ Saque la anilla, si sigue instalada, de la unidad de sonda y compruebe que la anilla instalada en la unidad de sonda no tenga defectos obvios y, si fuera necesario, sustitúyala por otra anilla extra proporcionada.
- ✓ Algunas calibraciones pueden ser realizadas con el modulo de sonda en posición vertical o boca abajo. Se requerirá un soporte fijo, como un soporte circular, para sujetar la unidad de sonda en la posición invertida
- ✓ Para calibrar, siga los procedimientos de la siguiente sección, Operaciones de Calibración. Se especifican más adelante los volúmenes aproximados de los reactivos tanto para la orientación vertical como para la de boca abajo.
- ✓ Si usa la recipiente de Transporte/Calibrado para calibrar a % de saturación de oxigeno disuelto (% DO), asegúrese de que el recipiente este abierto a la atmosfera aflojando la recipiente de calibración. La recipiente debe contener aproximadamente 1/8" de agua.

Sensor que se calibra	Posición vertical	Boca abajo
Conductividad	55ml	55ml
pH/ORP	30ml	60ml

Tabla 6.1 Volúmenes de calibración

6.2 Operaciones de Calibración

6.2.1 Acceso a la pantalla de Calibración

- **1.** Presione el botón de Encendido/Apagado para visualizar la pantalla.
- **2.** Presione **Escape** para visualizar el menú principal en la pantalla.
- 3. Use las flechas para seleccionar la opción de Calibración.

Menu principal
Ejecutar
Informe
Sensor
Calibrado
Archivo
Cargando configuracion
Configuracion del Sistema
745.9mmHg
12/03/2003 14:06:58

Imagen 6.1 Menú Principal

4. Pulse Enter. Se visualizara la pantalla de Calibración.

Calibrado		
Conductividad		
02 1 mil Teflon	(Negro)	
рН		
redox		
	745.8mmHg	
12/03/2003 14:07:33	±	

Imagen 6.2 Pantalla del Calibrado

6.2.2 Calibración de Conductividad

Esta operación calibra operaciones específicas (recomendado), de conductividad y salinidad. Calibrar una de las dos opciones hace que se calibre automáticamente la restante.

- **1.** Vaya a la pantalla de la calibración como lo descrito en la sección *6.2.1Acceso a la pantalla de Calibración*.
- **2.** Use las flechas para seleccionar la opción de Conductividad. Ver *Imagen 6.2 Pantalla del Calibración*.
- **3.** Presione **Enter.** La selección del Calibración de la Conductividad se visualizara.

Imagen 6.3 Pantalla de la Selección Calibrado de Conductividad

- **4.** Use las flechas para seleccionar la opción de Conductancia Especifica.
- **5.** Presione **Enter.** La pantalla de Entrada del Calibración de la Conductividad.

Imagen 6.4 Pantalla de Entrada del Calibración de la Conductividad

6. Coloque la cantidad exacta del estándar de conductividad (ver Tabla 6.1 Volúmenes de Calibración) dentro de la recipiente limpia, seca o pre-enjuagada de transporte/calibración.

ADVERTENCIA: Los reactivos de calibración pueden ser peligrosos para su salud. Ver *Apéndice D Salud y Seguridad* para más información.

NOTA: Para obtener una precisión máxima, el estándar de conductividad que elija debe estar en el mismo rango que las muestras que usted está preparando para medir. Sin embargo, no recomendamos usar estándares de menos de 1 mS/cm. Por ejemplo:

- ✓ Para agua dulce, usar un estándar de conductividad de 1 mS/cm.
- Para agua salobre usar un estándar de conductividad de 10 mS/cm.

✓ Para agua marina usar un estándar de conductividad de 50 mS/cm.

NOTA: Antes de proceder, asegúrese de que el sensor este lo más seco posible. Lo ideal es enjuagar el sensor de conductividad con una cantidad pequeña de estándar que puede ser desechada. Asegúrese de evitar la contaminación cruzada de las soluciones. Asegúrese de que no existan depósitos de sal alrededor de los sensores de oxigeno y pH/ORP, en especial si usted está empleando estándares de baja conductividad.

- **7.** Sumerja cuidadosamente el sensor de la unidad de sonda en la solución.
- **8.** Gire suavemente y/o mueva la unidad de sonda arriba y abajo para eliminar las burbujas que puedan existir en el sensor de conductividad.

NOTA: Se debe sumergir completamente el sensor un poco más allá del agujero de ventilación. Usando los volúmenes recomendados de la Tabla 6.1 Volúmenes de Calibración, debe asegurar que el agujero de ventilación este cubierto.

9. Ajuste la recipiente de transporte/calibración a la rosca de la unidad de sonda y asegúrela bien.

NOTA: No sobre ajustar ya que ello podría causar daños a la rosca.

10. Use el teclado para introducir el valor de calibración del estándar que esté usando.

NOTA: Asegúrese de poner el valor en mS/cm a 25°C.

11. Presione Enter. Se visualizara la Pantalla de Calibración de Conductividad.

Imagen 6.5 Pantalla de Calibración de Conductividad

- **12.** Espere al menos un minuto para equilibrar la temperatura antes de proceder. Los valores actuales de todos los sensores activados aparecerán en la pantalla y cambiaran con el tiempo según se vayan estabilizando.
- **13.** Observe la lectura que se encuentra debajo de Conductancia Especifica. Cuando la lectura no muestre un cambio significante durante 30 segundos, presione **Enter**. La pantalla indicara que la calibración ha sido aceptada y le indicara que presione otra vez **Enter** para continuar.

Calibra	ado
Continuar	
	22.68°c 10.00 ^{m5/m}
	8.22 _{рн} 207.6 _{окр}
12/03/2003 14:13:28	745.5mmHg ⊉

Imagen 6.6 Calibración

- **14.** Presione **Enter**. Esto le devuelve a la Pantalla de Selección de Calibración Conductividad. Ver *Imagen 6.3 Pantalla de Selección de Calibración de Conductividad*.
- **15.** Presione **Escape** para volver al menú de calibración. Ver imagen *6.2 Pantalla de Calibración*.
- **16.** Enjuague la unidad de Sonda y los sensores con agua del grifo o agua filtrada y seque.

6.2.3 Calibración de Oxigeno Disuelto

Este procedimiento calibra oxigeno disuelto. Calibrar cualquiera de sus opciones (% o mg/L) automáticamente calibra la restante.

1. Vaya a la pantalla del Calibración según lo descrito en la Sección *6.2.1 Pantalla de Calibración*

NOTA: El instrumento debe estar encendido al menos durante 10 - 15 minutos para polarizar el sensor de oxigeno disuelto antes de calibrar.

- **2.** Use las flechas para seleccionar la opción de **Oxigeno Disuelto.** Ver Imagen 6.2 Pantalla de Calibración.
- **3.** Pulse **Enter**. La pantalla del calibración de oxigeno disuelto se visualizara.

Imagen 6.7 Pantalla de Calibración de oxigeno disuelto

Calibrado de Oxigeno Disuelto en saturación %

- Use las flechas para seleccionar la opción de Oxigeno Disuelto %.
- **2.** Presione **Enter**. Se visualizara la pantalla de la presión Barométrica.

Imagen 6.8 Pantalla de Entrada de la Presión Barométrica.

- **3.** Coloque aproximadamente 3 mm (1/8 pulgada) de agua en el fondo de la recipiente de transporte/calibración.
- **4.** Coloque la unidad de sonda en la recipiente de transporte/calibración.

NOTA: Asegúrese de que los sensores de Oxigeno Disuelto y de temperatura no se sumerjan en el agua. El sensor debe ser calibrado en aire saturado con agua.

- **5.** Apriete solo 1 o 2 roscas del recipiente de transporte/calibrado para asegurar que el sensor de Oxigeno Disuelto este abierto a la atmosfera.
- **6.** Use el teclado para introducir la actual presión barométrica local.

NOTA: Si la unidad tiene un barómetro opcional, no se requiere ninguna entrada.

NOTA: Las lecturas del Barómetro que aparecen en informes meteorológicos se corrigen a nivel del mar y deben descorregirse antes del uso (referencia Sección *10.10 Calibrado del Barómetro, Paso 2*).

7. Presione **Enter** Se visualizara la pantalla de calibración de Saturación de Oxigeno Disuelto%.

ODsat cali	bracion
Calibrate	
	23.32 ₀
	0.00
	<u>93.3</u> _{00%}
	7.98 _P H
	166.5 _{ORP}
12/03/2003 14:17:45	745.3mmHg ≇∎

Imagen 6.9 Pantalla de Calibración de Saturación de Oxigeno.

- **8.** Espere aproximadamente diez minutos para que el aire en la recipiente de transporte/calibración se sature de agua y para que la temperatura se equilibre antes de proceder. Los valores actuales de todos los sensores aparecerán en la pantalla e irán cambiando según se vayan estabilizando.
- **9.** Observe la lectura de % de Oxigeno Disuelto. Cuando la lectura no muestre un cambio significante durante aproximadamente 30 segundos, presione **Enter**. El valor en % de saturación rara vez llega a 100% al momento de calibrar. Valores de > 90 % saturación DO son aceptables para calibración. La pantalla indicara que la calibración ha sido aceptada y le indicara que presione **Enter** otra vez para Continuar. Ver *Imagen 6.6 Calibrado*.
- **10.** Presione **Enter**. Le devolverá a la pantalla de calibración de Oxigeno Disuelto. Ver *Imagen 6.7 Pantalla de Calibrado de Oxigeno Disuelto*.

- **11.** Presione **Escape** para volver al menú de calibración. Ver *Imagen 6.2 Pantalla de Calibración*
- **12.** Enjuague la unidad de sonda y los sensores en agua de grifo o agua filtrada y seque.

Calibración de Oxigeno Disuelto en mg/L

La calibración de Oxigeno Disuelto en mg/L se lleva a cabo en una muestra de agua que tiene una concentración conocida de oxigeno disuelto (normalmente determinada por tritacion Winkler).

- **1.** Vaya a la pantalla de calibración de Oxigeno Disuelto según lo descrito en la sección *6.2.3 Calibración de Oxigeno Disuelto*, pasos 1-3.
- **2.** Use las flechas para seleccionar la opción de Oxigeno Disuelto mg/L.
- **3.** Presione **Enter**. Se visualizara la pantalla de Entrada de Oxigeno Disuelto mg/L.

Enter02	mg/L
8.56	
12/03/2003 14:19:17	745.2mmHg 1

Imagen 6.10 Pantalla de Entrada de Oxigeno Disuelto mg/L

4. Coloque la unidad de sonda en agua con una concentración conocida de Oxigeno Disuelto.

NOTA: Asegúrese de sumergir completamente todos los sensores.

- **5.** Use el teclado para introducir una concentración conocida de Oxigeno Disuelto del agua.
- **6.** Presione **Enter**. Se visualizara la pantalla de Calibración de oxigeno disuelto mg/L.

Imagen 6.11 Pantalla del Calibración de Oxigeno Disuelto

- 7. Mueva o agite el agua el agua con una barra o mueva rápidamente la unidad de sonda para proporcionar una muestra fresca al sensor de Oxigeno Disuelto. Debe haber movimiento continuo de agua a través del sensor para obtener resultados correctos.
- **8.** Espere al menos un minuto para equilibrar la temperatura antes de proceder. Los valores actuales de todos los sensores se visualizaran en la pantalla e irán cambiando según se vayan estabilizando.
- **9.** Observe la lectura del Oxigeno Disuelto, cuando la lectura sea estable (cuando no muestre cambios significantes durante aproximadamente 30 segundos) presione **Enter**. La pantalla le indicara que la calibración ha sido aceptada y que presione Enter otra vez para continuar.
- **10.** Presione **Enter**. Esto le devolverá a la pantalla de Calibración de Oxigeno Disuelto. Ver Imagen 6.7 Pantalla de Calibración de Oxigeno Disuelto.

- **11.** Pulse **Escape** para volver al menú del Calibración. Ver Imagen 6.2 Pantalla de Calibración
- **12.** Enjuague la unidad de sonda y los sensores en agua del grifo o en agua filtrada y seque.

6.2.4 Calibración de pH

- **1.** Vaya a la pantalla de calibración según lo descrito en la Sección *6.2.1Acceso a la pantalla de Calibración*
- **2.** Use las flechas para seleccionar la opción de **pH** Ver Imagen *6.2 Pantalla de Calibración.*
- 3. Presione Enter. La pantalla de calibración de pH se visualizara.

calibrad	ion pH
1 Punto	
2 Punto	
3 Punto	
12/03/2003 14:21:04	745.2mmHg ⊈∎

Imagen 6.12 Pantalla de Calibración de pH

- Seleccione la opción de 1-punto solo si usted está ajustando calibración previa. Si ha calibrado a dos o tres puntos anteriormente (el mismo día) usted puede ajustar la calibración llevando a cabo una calibración de 1-punto. El procedimiento para esta calibración es el mismo que si realiza una calibración de 2-puntos, pero el software le indicara que seleccione solo un estándar de pH.
- Seleccione la opción 2-punto para calibrar el sensor pH usando solo dos estándares (buffer) de calibración. Use esta opción si sabe el rango de pH que va a medir. Por ejemplo, si el pH de un estanque se conoce que varía entre 5.5 y 7, una calibración 2-

puntos es suficiente (pH 4 y 7). Una calibración de 3-puntos no aumentara la precisión de esta medida ya que el pH no está dentro del rango más alto.

- Seleccione la opción de 3-punto para calibrar el sensor de pH usando tres soluciones de calibración. En este procedimiento, el sensor de pH es calibrado con solución (buffer) de pH 7 y dos soluciones (buffer) adicionales de pH 4 y 10. El método de calibración de 3-puntos asegura una precisión máxima cuando el rango de pH a medir no puede ser anticipado. El procedimiento para esta calibración es el mismo que para el calibrado de 2-puntos pero el software no le indicara que seleccione una tercera solución buffer de pH.
- 4. Use las flechas para seleccionar la opción de 2-punto.
- 5. Presione Enter. Se visualizara la pantalla de Entrada de pH.

Imagen 6.13 Pantalla de Entrada de pH

6. Coloque la cantidad exacta (ver Tabla 6.1 Volúmenes de Calibrado) de solución buffer de pH en un recipiente limpio, seco o pre-enjuagado de transporte/calibrado.

Nota: Siempre calibre con buffer 7 primero, independientemente si ejecuta calibración de 1, 2, ó 3 puntos.

ADVERTENCIA: Los reactivos de Calibración pueden ser peligrosos para su salud. Ver *Apéndice D Salud y Seguridad* para más información.

NOTA: Para una precisión máxima, las soluciones buffer de pH que elija deben estar dentro del mismo rango de pH que el agua que usted esté preparando para medir.

NOTA: Antes de proceder, asegúrese de que el sensor este lo más seco posible. Lo ideal es enjuagar el sensor de pH con una pequeña solución buffer que puede ser desechada. Asegúrese de evitar la contaminación-cruzada de las soluciones buffer con otras soluciones

- **7.** Sumerja cuidadosamente el final del sensor de la unidad de sonda en la solución.
- **8.** Gire bien y/o mueva la unidad de sonda arriba y abajo para eliminar las burbujas del sensor de pH.

NOTA: El sensor debe estar completamente inmerso. Si usa los volúmenes recomendados de la Tabla 6.1, asegurara que el sensor está perfectamente cubierto.

9. Ajuste la recipiente de transporte/calibración en la final de la unidad de sonda a enroscar y asegure bien.

NOTA: No sobre apriete ya que esto podría causar daños a la rosca.

10. Use el teclado para introducir el valor de la solución buffer que usted está usando **a la temperatura actual**.

NOTA: los valores de pH junto con los de temperatura están impresos en las etiquetas de todos las soluciones buffer de pH de YSI.

11. Pulse **Enter**. La pantalla de calibración de pH se visualizara en la pantalla.

Imagen 6.14 Pantalla de calibración de pH

- **12.** Espere al menos un minuto para que la temperatura se equilibre antes de proceder. Los valores actuales de los sensores activados aparecerán en la pantalla e irán cambiando según se vayan estabilizando.
- **13.** Observe la lectura del pH, cuando las lecturas no muestren cambios significativos durante 30 segundos aproximadamente, presione Enter. La pantalla indicara que la calibración ha sido aceptada y que debe presionar Enter otra vez para continuar.
- **14.** Pulse **Enter**. Esto le devolverá a la pantalla de calibración de pH específico. Ver Imagen 6.13 .
- **15.** Enjuague la unidad de sonda, la recipiente de transporte/calibración y los sensores en agua de grifo o agua filtrada y seque.
- 16. Repita los pasos 6 hasta 13 usando solución buffer de pH.
- **17.** Presione **Enter**. Esto le devuelve a la pantalla de Calibración de pH. Ver Imagen 6.12 .
- **18.** Presione **Escape** para volver al menú de calibración. Ver Imagen 6.2 .

19. Enjuague la unidad de sonda y los sensores en agua del grifo o agua filtrada y seque.

6.2.5 Calibrado del ORP

- **1.** Vaya a la pantalla de calibración según lo descrito en la sección 6.2.1 *Acceso a la pantalla de Calibración*.
- 2. Use las flechas para seleccionar la opción ORP. Ver Imagen 6.2
- **3.** Presione **Enter**. La pantalla de calibración de ORP se visualizara.

Enterredox mV	
237.5	
745.1mmHg 12/03/2003 14:24:02	

Imagen 6.15 Pantalla de Calibración especifica de ORP

4. Coloque la cantidad correcta (Ver Tabla 6.1) de una solución con valor conocido de ORP (recomendamos solución Zobell) dentro de la recipiente limpia, seca o pre-enjuagada de transporte/calibración.

ADVERTENCIA: Los reactivos del Calibración pueden ser peligrosos para su salud. Ver *Apéndice D Salud y Seguridad* para más seguridad.

NOTA: Antes de proceder, asegúrese de que el sensor este lo más seco posible. Lo ideal es enjuagar el sensor ORP con una cantidad pequeña de solución que puede ser desechada. Asegúrese de evitar contaminación cruzada con otras soluciones.

- **5.** Sumerja cuidadosamente el final del sensor de la unidad de sonda dentro de la solución.
- **6.** Gire bien y/o mueva la unidad de sonda arriba y abajo para eliminar las burbujas del sensor ORP.

NOTA: El sensor debe estar completamente sumergido. Si usa los volúmenes recomendados de la Tabla 6.1 asegurara que el sensor está cubierto.

7. Encaje la recipiente de transporte/calibración en la rosca de la unidad de sonda y apriétela bien.

NOTA: No lo apriete demasiado ya que podría causar daños a la rosca.

8. Use el teclado para introducir el valor exacto de solución de calibración que usted está usando a la temperatura actual. Referencia Tabla 6.2 Valores de la Solución de Zobell.

Temperatura °C	Valor de la Solución de Zobell,	
	mV	
-5	270.0	
0	263.5	
5	257.0	
10	250.5	
15	244.0	
20	237.5	
25	231.0	
30	224.5	
35	218.0	
40	211.5	
45	205.0	
50	198.5	

Tabla 6.2 Valores de la Solución de Zobell

9. Pulse Enter. Se visualizara la pantalla de calibración de ORP.

Imagen 6.16 Pantalla de Calibración de ORP

10. Espere al menos un minuto para equilibrar la temperatura antes de proceder. Los valores actuales de todos los sensores activados aparecerán en la pantalla e irán cambiando según se vayan estabilizando.

NOTA: Verifique que la lectura de la temperatura sea la misma que el valor que uso en la Tabla 6.2 Valores de Solución Zobel .

- **11.** Observe la lectura de ORP, cuando la lectura no muestre cambios significantes durante aproximadamente 30 segundos, presione **Enter**. La pantalla le indicara que la calibración ha sido aceptada y que debe pulsar **Enter** otra vez para Continuar.
- **12.** Presione **Enter**. Esto le devolverá a la pantalla de calibración. Ver Imagen 6.2 .
- **13.** Enjuague la unidad de sonda y los sensores con agua de grifo o con agua filtrada.

6.3 Como volver a la configuración original de fábrica

- **1.** Vaya a la pantalla de calibración según lo descrito en la Sección 6.2.1 *Acceso a la pantalla de Calibración.*
- **2.** Use las flechas para seleccionar la opción de **Conductividad.** Ver Imagen 6.2 .

NOTA: Usaremos el sensor Conductividad como un ejemplo; sin embargo, este proceso funcionara para cualquier otro sensor.

- **3.** Pulse **Enter.** Se visualizara la pantalla de la opción de Conductividad. Ver Imagen 6.3 .
- **4.** Use las flechas para seleccionar la opción de <u>Conductancia</u> <u>específica.</u>
- **5.** Presione **Enter.** Se visualizara la pantalla de entrada de Calibración de Conductividad. Ver Imagen 6.4 .
- **6.** Presione y mantenga apretada la tecla de **Enter** y presione la tecla de **Escape**.

7. Use las flechas para seleccionar la opción SI.

PRECAUCION: Esto le devolverá al sensor a la configuración original de fábrica. Por ejemplo, seleccionar que el sensor de conductancia especifica vuelva a su configuración original, hará que la salinidad y la conductividad vuelvan a su configuración original de fabrica de forma automática.

- **8.** Presione **Enter**. Esto le devolverá a la pantalla de Calibración de Conductividad. Ver Imagen 6.3 .
- **9.** Pulse **Escape** para volver al menú de calibración. Ver Imagen 6.2

7. Ejecutar

La pantalla de Ejecutar visualizara los datos de los sensores a tiempo real y permite al usuario introducir muestras de datos en la memoria para un posterior análisis.

7.1 Datos a tiempo Real

NOTA: Antes de medir muestras debe preparar la unidad de sonda (refiérase a la Sección *3.4 Preparación de la Unidad de Sonda*), conecte la unidad de sonda al instrumento (refiérase a la sección *3.6 Conexión del Instrumento/Cable*) y calibre los sensores (referencia Sección *Error! Reference source not found. Calibración*).

1. Pulse la tecla de Encendido/Apagado

O seleccione Ejecutar del menú principal para visualizar la pantalla.

Imagen 7.1 Pantalla de Ejecutar

- **2.** Asegúrese de que la protección de la unidad de sonda este instalada.
- **3.** Coloque la unidad de sonda en la muestra. Asegúrese de que todos los sensores estén inmersos.
- **4.** Mueva rápidamente la unidad de sonda a través de la muestra para proveer una muestra fresca al sensor de Oxigeno Disuelto.
- 5. Mire las lecturas en la pantalla hasta que estén estables.

6. Refiérase a la sección *9.Cargar configuración* para recibir instrucciones para la introducción de datos de muestras.

8. Archivo

El menú Archivo permite al usuario ver, transferir o borrar datos de muestras y archivos de anteriores calibraciones almacenadas en el YSI 556 MPS.

8.1 Acceso a la pantalla de archivo

- **1.** Pulse la tecla de Encendido/Apagado para visualizar la presente pantalla.
- 2. Pulse Escape para visualizar la pantalla del menú principal.

Menu principal
Ejecutar
Informe
Sensor
Calibrado
Archivo
Cargando configuracion
Configuracion del Sistema
745.4mmHg 12/03/2003 14:34:40

Imagen 8.1 Pantalla del Menú Principal

- 3. Use las flechas para seleccionar la opción de Archivo.
- 4. Pulse la tecla de Enter. La pantalla del Archivo se visualizara.

Archivo	
Directorio	
Tranferir a PC	
Representar archivo	
Ver archivo	
Memoria usada	
Borrar todos los archivos	
745.5mmHg 12/03/2003 14:35:26	

Imagen 8.2 Pantalla del Archivo

8.2 Directorio

- 1. Vaya a la pantalla del archivo según lo descrito en la Sección *Error! Reference source not found.*.
- **2.** Use las flechas para seleccionar la opción de **Directorio**. Ver Imagen 8.2 .
- 3. Pulse Enter. Se visualizara la pantalla del archivo

NOTA: Los archivos están listados en el orden según han sido introducidos en la memoria. Los archivos de datos de muestras tienen la extensión **.dat**, mientras que los archivos de Calibración almacenados tienen la extensión de archivo **.glp**.

Archivo	Muestra	Bytes
SWMON3.glp	188	3770
0000884A.gl	p 89	1790
RED.dat	10	601
CAT.dat	61	2488
YSI1.dat	610	22801
GLENHLEN.dat	t 63	2295
CUBA.dat	12	612
MIAMI.dat	56	2064
12/03/2003 14:39:		5.9mmHg

Imagen 8.3 Pantalla del listado de Archivos

- 4. Use las flechas para seleccionar un archivo.
- 5. Pulse Enter. Se visualizara la pantalla de detalles del archivo.

Detallar archivo
Representar archivo
Ver archivo
Archivo:YSI1.dat
Lugar:
ID:
Muestras: 610
Bytes: 22801
Primero:08/09/2003 14:06:1
745.7mmHg
12/03/2003 14:42:47

Imagen 8.4 Pantalla de detalles del Archivo

- **6.** Pulse **Enter** para visualizar los datos del archivo. Referencia Sección *V archivo* para más detalles.
- **7.** Pulse **Escape** repetidamente para volver a la pantalla del menú principal.

8.3 Ver Archivo

- Vaya a la pantalla del archivo según lo descrito en la Sección Error! Reference source not found.. Ver Imagen 8.2.
- 2. Use las flechas para seleccionar la opción Ver archivo
- **3.** Pulse **Enter.** Se visualizara una lista de archivos. Ver Imagen *8.3 Pantalla de la lista de archivos.*
- 4. Use las flechas para seleccionar un archivo individual.

NOTA: Puede que tenga que desplazarse hasta el final de la lista de archivos.

5. Pulse **Enter**. Los datos del archivo se visualizaran con el nombre del archivo en la parte superior de la pantalla.

NOTA: Si no está especificado el nombre del archivo, los datos se almacenaran bajo el nombre de SIN NOMBRE.dat (NONAME1.dat)
	VET1 dat		
Fecha	Uora	TomD	ŧ
m/d/a	hbimmica	Temp	
08/09/2003	14:06:18	30.61	
08/09/2003	14:06:19	30.20	
08/09/2003	14:06:20	30.19	
08/09/2003	14:06:21	30.19	
08/09/2003	14:06:22	30.19	
08/09/2003	14:06:23	30.19	
08/09/2003	14:06:24	30.19	
08/09/2003	14:06:25	30.19	
08/09/2003	14.06.26	30 18	
			.↓
*		745 AmmHa	`
12/03/2003 1/	I-//3-07 IF	740.0	
12/00/2003 14	.40.20		

Imagen 8.5 Pantalla de los Datos del Archivo

- **6.** Use las flechas para deslizarse horizontal y/o verticalmente para ver todos los datos.
- **7.** Pulse la tecla de **Escape** repetidamente para volver a la pantalla del menú principal.

8.4 Transferir a PC

El EcoWatchTM para WindowsTM debe ser usado como el interface del software del PC para YSI 556 MPS. Refiérase *Apéndice G EcoWatch* para más información. El EcoWatch para Windows puede descargarse de forma gratuita de la pagina web de YSI (www.ysi.com) o contactando el servicio Técnico de YSI. Refiérase al *Apéndice E Servicio al Cliente*.

8.4.1 Descarga del Sistema

- **1.** Desconecte la Unidad de Sonda YSI 5563 del instrumento YSI 556 MPS.
- **2.** Conecte el YSI 556 MPS a una entrada (Comm) de su ordenador usando el cable conector 655173 de PC según lo descrito en el siguiente diagrama:

Imagen 8.6 Conexión Computador/Instrumento

3. Abra el EcoWatch para Windows en su computador.

NOTA: Ver *Apéndice G EcoWatch* para recibir instrucciones sobre la instalación.

- **4.** Haga Click sobre el icono de Sonda Sonda en la barra de herramientas superior.
- **5.** Introduzca el número de entrada del Comm para igualar al número de entrada del YSI 556 MPS al que está conectado. Después de este procedimiento, la siguiente pantalla estará presente en su monitor:

EcoWatch - Sonde - COM2			_ 8 ×
Eile View Comm Real-time Appl Wind	dow <u>H</u> elp		
Fer Børn	N NI H PE R		
Sonde - COM2			
×1_			
For Help, press F1			NUM
Start Word	EcoWatch - Sonde	12 H M V 🕏 🕉 🤄 🤊	9:12 PM

8.4.2 Transferencia de un archivo con extensión .DAT

- **1.** Prepare el instrumento según lo descrito en la Sección *8.4.1 Organización de la Descarga*.
- 2. Vaya a la pantalla de archivo del YSI 556 MPS según lo descrito en la sección *Error! Reference source not found.*.
- **3.** Use las flechas para seleccionar la opción **Transferir a PC**. Ver *Imagen 8.2*.
- **4.** Pulse la tecla **Enter**. Se visualizara la lista de archivos. Ver Imagen *8.3 Pantalla del listado de archivos*.
- **5.** Use las flechas para seleccionar el archivo de extensión DAT que usted desea transferir y presione **Enter**, tanto el YSI 556 MPS como el PC visualizaran el progreso de la transferencia del archivo.

Imagen 8.7 Pantalla del progreso de la transferencia del archivo

NOTA: Después de la transferencia, el archivo se almacenara en la carpeta C:\ECOWWIN\DATA de su PC, designado con una extensión .DAT.

6. Cuando la transferencia del archivo finalice, cierre la ventana terminal (la ventana pequeña en su PC) haciendo click en la "X" en la esquina superior derecha.

7. Pulse **Escape** en el YSI 556 MPS repetidamente para volver a la pantalla del menú principal.

8.4.3 Transferencia de un archivo de Calibración Almacenado (.glp)

Para más información sobre una grabación de datos de calibración, refiérase al *Apéndice H Información de un archivo de Calibración*.

- **1.** Prepare el instrumento según lo descrito en la Sección *8.4.1 Organización de la descarga*.
- 2. Vaya a la pantalla del archivo del YSI 556 MPS según lo descrito en la Sección *Error! Reference source not found.*.
- **3.** Use las flechas para seleccionar la opción **Descarga en su PC**. Ver *Imagen 8.2*.
- **4.** Pulse **Enter.** Se visualizara el listado de archivos. Ver *Imagen 8.3. Pantalla del listado de archivos.*
- **5.** Use las flechas para seleccionar el archivo almacenado de calibración que desea transferir y a continuación pulse **Enter**.
- 6. Se le dará entonces a elegir una forma de transferencia del archivo en tres formatos: Binario, Coma & "" Delimitado, y texto ASCII.

NOTA: El formato binario está reservado para futuros paquetes de software de YSI.

7. Elija una opción y presione **Enter**, tanto el YSI 556 como el PC visualizaran el progreso de la transferencia del archivo.

NOTA: Después de la transferencia, el archivo estará localizado en el archivo C:\ECOWWIN\DATA de su PC, designado con la extensión apropiada de archivo.

NOTA Para ver los datos de Calibración almacenados después de la descarga, simplemente abra el archivo con extensión .txt en un editor general de textos como Wordpad o Notepad.

- **8.** Cuando la transferencia se haya completado, cierre la ventana terminal (la ventana pequeña en el PC) haciendo click en la "X" de la esquina superior derecha.
- **9.** Pulse la tecla **Escape** repetidamente para volver a la pantalla del menú principal.

8.5 Memoria del archivo

- Vaya a la pantalla del archivo según lo descrito en la sección Error! Reference source not found.
- **2.** Use las flechas para seleccionar la opción **memoria usada.** Ver *Imagen 8.2*.
- 3. Pulse Enter. Se visualizaran los bytes usados en la pantalla.

Imagen 8.8 Pantalla de los Bytes usados

4. La cantidad de memoria disponible se podrá ver en la línea 4 de la lista de los bytes usados.

NOTA: Si la cantidad de memoria libre es baja, es hora para borrar todos los archivos (después de transferir todos los datos a un PC por supuesto). Refiérase a la Sección *8.6 Borrado de todos los archivos*.

5. Presione **Escape** repetidamente para volver a la pantalla del menú principal.

8.6 Borrado de todos los Archivos

NOTA: No es posible borrar los archivos de forma individual para obtener memoria libre. La única forma de liberar memoria es borrar TODOS LOS ARCHIVOS presentes. Tenga cuidado la transferir todos los archivos en su PC (refiérase a la sección 8.4 Transferir al PC) antes de borrarlos.

- 1. Vaya a la pantalla del archivo según lo descrito en la sección *Error! Reference source not found.*.
- **2.** Use las flechas para seleccionar la opción Borrar todos los archivos. Ver *Imagen 8.2*.
- **3.** Pulse la tecla de Enter. Se visualizara en la pantalla el borrado de todos los archivos.

Imagen 8.9 Borrado de todos los archivos

- 4. Use las flechas para seleccionar la opción de Borrado.
- 5. Pulse Enter.

-Borrar todos los archivos- ADVERTENCIA:Esta operacion va a borrar todos los datos de la memoria. Borrando
Bor 28% Abortar
745.4mmHg 12/03/2003 16:01:12

Imagen 8.10 Borrado

El progreso del borrado del archivo se visualizara en un grafico de formato de barra.

NOTA: El hecho de borrar todos los archivos en el directorio no cambiara ninguna información del listado.

6. Presione la tecla de **Escape** repetidamente para volver al menú principal.

9. Cargar configuración

9.1 Acceso a la pantalla de Cargar Configuración

- **1.** Presione la tecla de Encendido/apagado para visualizar la pantalla.
- 2. Presione la tecla de Escape para visualizar el menú principal.

Menu principal
Ejecutar
Informe
Sensor
Calibrado
Archivo
Cargando configuracion
Configuracion del Sistema
_
745.6mmHg
12/03/2003 14:57:20

Imagen 9.1 Menú Principal

- **3.** Use las flechas para seleccionar la opción de *Cargar configuración*
- **4.** Presione la tecla de **Enter.** La pantalla de *Cargar configuración* se visualizara.

Imagen 9.2 Pantalla de Acceso a Cargar Configuración

9.2 Establecimiento de un intervalo de acceso

Siga los pasos que se indican a continuación para establecer intervalos para introducir grupos de datos.

NOTA: Si usted no especifica un intervalo, el instrumento usara intervalos de un segundo.

NOTA: No es necesario establecer intervalos cuando introduzca una sola muestra.

- **1.** Vaya a la pantalla del Acceso al registro según lo descrito en la sección *9.1Acceso a la pantalla de Cargar Configuración*.
- **2.** Use el teclado para introducir intervalos de entre 1 segundo y 15 minutos. Refiérase a la Sección *2.9 Uso del Teclado*.

NOTA: El campo del intervalo tiene los campos de hora, minuto y segundo. Una entrada de más de 1 hora se cambiara automáticamente a una composición de 15-minutos.

- **3.** Presione Enter. El grupo de datos está preparado.
- **4.** Presione **Escape** repetidamente para volver a la pantalla del menú principal.

9.3 Almacenamiento de las lecturas de Barómetro almacenadas

NOTA: La opción de **Almacén de Barómetro** esta solo disponible en los instrumentos equipados con barómetro opcional.

- **1.** Vaya a la pantalla del acceso al registro, según lo descrito en la sección *9.1 Acceso a la pantalla de Cargar Configuración*.
- **2.** Use las flechas para seleccionar la opción de Almacén de Barómetro. Ver *Imagen 9.2 Pantalla de Cargar Configuración*.
- **3.** Presione la tecla **Enter** hasta que la marca de control este introducida en el espacio al lado de la selección de almacén de barómetro si usted quiere introducir lecturas barométricas.

O presione la tecla **Enter** hasta que el espacio al lado de la selección del barómetro este vacía si usted no quiere introducir lecturas barométricas.

Cargando configuracion Intervalo=00:00:01
🗆 Usar lista de Lugares
⊿Guardar Barometro
745.6mmHg 12/03/2003 14:59:19 ≝

Imagen 9.3 Almacén del Barómetro

4. Presione **Escape** repetidamente para volver a la pantalla del menú principal.

9.4 Como Crear una lista de Sitios

La lista de sitios le permite definir un archivo y una lista de sitios en su oficina o laboratorio antes de seguir con estudios de campo. Esto es normalmente más conveniente que introducir la información en el sitio y especialmente es valiosa cuando visita frecuentemente ciertos sitios. La siguiente sección describe como establecer listas de sitios que contienen entradas designadas como "Descripciones de sitios" que estarán disponibles para el usuario en el campo para facilitar el ingreso de datos con archivos y sitios pre-establecidos. Hay dos clases de Descripciones de Sitio disponibles en las listas de sitios.

> • Las descripciones de la Sitios asociadas con las aplicaciones donde los datos de uno solo sitio están introducidos en un solo archivo. Este tipo es conocido como "Descripción de un solo sitio" y está caracterizado por dos parámetros- un nombre de archivo y un nombre de sitio. Los archivos ingresados en la memoria del YSI 556 MPS bajo la Descripción de un solo sitio se caracterizaran fundamentalmente por el nombre del archivo, pero también por el nombre del archivo adjunto, de tal forma que está disponible su visualización tanto en el Directorio de

 La Descripción del Sitio asociada con las aplicaciones donde los datos de sitios múltiples son introducidos en un solo archivo. Este tipo es conocido como la "Descripción de Multi-Origen" y está caracterizada por tres parámetros-un nombre de archivo, un nombre de origen, y un numero de origen. Los archivos descargados en la memoria del YSI 556 MPS bajo Descripción Multi-Origen están caracterizados por un nombre de archivo, pero no un nombre de sitio, ya que se involucran múltiples orígenes. Sin embargo, cada set de datos tiene un numero de sitio adjunto de tal manera que el usuario puede determinar fácilmente el origen de las muestras al mirar el Menú del Archivo del YSI 556 MPS o procesando los datos en el EcoWatch para Windows después de transferirlo en el PC.

Imagen 9.5 Descripciones de multi-origen

NOTA: Las listas de origen que contienen Descripciones de un solo sitio son generalmente ingresadas con la designación Numero de origen de almacenado INACTIVO en el menú de Registro de entrada. De esta forma, ningún nombre de sitio aparecerá en el primer ejemplo de la lista de sitios. Y al contrario, las listas de sitios que contienen Descripciones de Multi-Origen DEBEN ser entrada ACTIVA en la opción con el numero de sitio de almacenaje según lo mostrado en el segundo ejemplo.

Para crear una lista de sitios.

- 1. Vaya a la pantalla de registro de entrada según lo descrito9.1 Acceso a la pantalla de Cargar Configuración.
- **2.** Use las flechas para seleccionar la opción de *Uso de la lista de sitios*.
- **3.** Pulse la tecla de **Enter**. Una marca de selección se introducirá en el cuadrado que está al lado del Uso de la lista de sitios y dos nuevas entradas aparecerán en la pantalla de registro. Ver *Imagen 9.6 Pantalla de Cargar Configuración*.

Imagen 9.6 Pantalla de Cargar Configuración

- **4.** Use las flechas para seleccionar el numero de almacenado de origen.
- **5.** Si usted está creando Descripciones de Multi-Origen (que requieren que el numero este almacenado en sus archivos de

datos) presione Enter hasta que la marca de selección aparezca en el cuadradito al lado del numero de almacenado de sitio.

O pulse **Enter** hasta que el cuadrado al lado del numero de almacenado este vacío, para crear Descripciones de un Solo Origen. El nombre del sitio se almacenara en el titulo de sus archivos de datos.

- **6.** Use las flechas para seleccionar la opción de Editar la lista de sitios.
- **7.** Presione **Enter.** Se visualizara en la pantalla Edición de sitios. Ver *Imagen 9.7 Pantalla de Edición de lista de sitios*. El nombre de Archivo está listo para la entrada de datos.

Imagen 9.7 Pantalla de Edición de sitios

- **8.** Use el teclado para ingresar el nombre de archivo de hasta 8 caracteres de longitud. Refiérase a la Sección 2.9 Uso del *Teclado*.
- **9.** Pulse la tecla de **Enter.** El cursor se moverá hacia la derecha para ingresar el nombre de sitio.
- **10.** Use el teclado para ingresar el nombre del sitio de hasta 11 caracteres de longitud. Refiérase a la sección 2.9 Uso del teclado.

NOTA: Si el número de almacenamiento de sitio no está marcado, salte al paso 13.

- **11.** Pulse **Enter.** El cursor se moverá hacia la posición del número de entrada del sitio.
- **12.** Use el teclado para introducir un número de sitio de hasta 7 caracteres de longitud. Refiérase a la Sección *2.9 Uso del teclado*.
- **13.** Pulse **Enter**. El cursor se mueve hasta la siguiente entrada de nombre de archivo.
- **14.** Repita los pasos 8 al 13 hasta que todos los nombres de archivos y sitios estén ingresados.
- **15.** Pulse **Escape** repetidamente para volver a la pantalla del menú principal.

9.5 Edición de lista de sitios

- **1.** Vaya a la pantalla de registro según lo descrito en la Sección 9.1 Acceso a la Pantalla de Cargar Configuración.
- **2.** Use las flechas para seleccionar la opción de Edición de lista de sitios. Ver *Imagen 9.6 Pantalla de Cargar Configuración*
- **3.** Pulse **Enter.** La pantalla de Edición de listado de sitios se visualizara.
- **4.** Edite la lista de sitios usando los comandos descritos seguidamente.

NOTA: Editar la lista de sitios no tendrá ningún efecto en los archivos almacenados en la memoria del instrumento.

Como MOVER un sitio: Use las flechas para seleccionar el sitio. Pulse la flecha de Arriba o Abajo mientras sostiene la tecla de Enter.

Como INSERTAR un sitio encima de otro sitio: Use las flechas para seleccionar el sitio. Presione la flecha de la derecha mientras sostiene Enter. Use el teclado para introducir letras. **Referencia:Seccion** 2.9 Uso del teclado.

9.6 Ingreso de Datos Sin Lista de Sitios

- 1. Siga los pasos 1 hasta el 5 de la sección Datos a tiempo Real.
- **2.** Use las flechas para seleccionar Entrada de una muestra de la pantalla si ingresa una sola muestra.

O Use las flechas para seleccionar la opción de Iniciar la entrada en la pantalla si el grupo de datos está siendo ingresado.

Ejecut	ar
Cargar una muestra Comenzar la carga	22.52℃ 0.00 91.9∞% 8.23₽H
12/03/2003 14:34:09	745.3mmHg

Imagen 9.9 Pantalla de Ejecutar

3. Presione Enter. La información de ingresar se visualizara.

ucir informacion, _「 Nombre d _i	luego seleccio
YSII OK	
Ubicacion	
	Configurar
	_
12/03/2003 16:10:03	745.4mmHg

Imagen 9.10 Pantalla de Información de la Entrada

NOTA: Se visualizara el nombre de archivo que usted ha utilizado últimamente.

4. Use el teclado para ingresar el nombre del sitio. Referencia: Sección *2.9 Uso del teclado*.

NOTA: El instrumento asignara un archivo con el nombre con ningún nombre especificado SIN NOMBRE.

- 5. Presione Enter para ingresar el nombre del archivo.
- **6.** Use las flechas para seleccionar el campo Descripción del sitio en la pantalla de entrada de información.

NOTA: Ingresar descripción del sitio es opcional. Usted puede dejar el espacio en blanco y saltar al paso 9.

- **7.** Use el teclado para ingresar un nombre a la descripción del sitio. Refiérase a la Sección *2.9 Uso del teclado*.
- 8. Presione Enter para ingresar la descripción del sitio.

NOTA: Si desea cambiar la composición de la entrada, como el intervalo de muestreo o almacenar la lectura del barómetro, use las flechas para seleccionar el campo de Configuración, presione Enter. Después refiérase a la Sección *9.2 Establecimiento de un intervalo de acceso* o *9.3 Almacenamiento de lecturas del Barómetro* para recibir más detalles.

- **9.** Use las flechas para seleccionar el campo OK en el centro de la pantalla de información.
- **10.** Presione Enter para comenzar la entrada.

NOTA: Si el parámetro no corresponde a la pantalla que se visualiza, refiérase a la Sección *9.8 Añadir datos a archivos existentes*.

11. Si se introduce un solo punto, el titulo de la pantalla de Ejecutar cambia de Menú a Entrada de Muestra para confirmar que se ingreso correctamente el punto. Pase al paso 13.

Ejecut	argada
Cargar una muestra Comenzar la carga	
	23 13
	U.UU
	92.5my
	<u>8</u> 55
	0.JJPH
	164.3 _{ORP}
12/02/2003 15:14:05	745.8mmHg
12/03/2003 15:14:05	

Imagen 9.11 Pantalla de ingreso de muestras

Si se ingresa un grupo continuo de puntos, la entrada de un grupo en la pantalla de Ejecutar habrá un cambio de Empiece a ingresar o Pare de ingresar.

Ejecut	ar ndo
Cargar una muestra Detener la carga	
	23.13 ℃
	0.00 _{m54.5}
	92.5 _{my}
	8.50.
	164.8 _{npp}
	745.8mmHg
12/03/2003 15:14:42	

Imagen 9.12 Pantalla de Ejecutar

- **12.** Al final del intervalo, presione Enter para detener el ingreso
- **13.** Referencia en Sección *V datos* para ver los datos en el instrumento.

9.7 Ingreso de datos con una lista de sitios

- **1.** Si usted no ha creado todavía una lista de sitios, refiérase a la Sección *9.4 Como Crear una lista de Sitios*.
- 2. Siga los pasos 1 hasta 5 en la sección 7.1 Datos a tiempo Real.
- **3.** Use las flechas para seleccionar la opción Ingresar una muestra en la pantalla de Ejecutar si desea introducir una sola muestra.

O use las flechas para seleccionar la opción Empiece a ingresar en la pantalla si está ingresando el grupo de datos. Ver *Imagen* 9.9 Pantalla de Ejecutar.

4. Pulse **Enter.** Se visualizara una pantalla que diga "elija un sitio".

Imagen 9.13 Pantalla de Elección de sitio

5. Use las flechas para seleccionar el sitio que usted desee.

NOTA: Si el sitio que usted desea no está listado, refiérase a la Sección *9.8 Anadir Datos a Archivos ya existentes*.

NOTA: Refiérase a la Sección 9.5 Editar una lista de sitios si desea editar la lista

6. Pulse Enter para empezar el ingreso de datos.

NOTA: Si el parámetro no concuerda con la pantalla que se visualiza, refiérase a la sección *9.8 Anadir datos a archivos ya existentes.*

7. Si se ingresa un solo punto, el titulo de la pantalla momentáneamente cambiara de Menú a Muestra ingresada para confirmar que el punto se ha ingresado satisfactoriamente. Ver *Imagen 9.11 Pantalla de Muestra introducida*. Pase al paso 9.

Si desea ingresar un grupo de puntos, la entrada cambiara de *Comenzar la carga* a *Detener la carga*. Ver *imagen 9.12 Pantalla de Introducción*.

- **8.** Al final del intervalo de entrada, presione Enter para detener la carga.
- **9.** Referencia Sección *8.3 Ver archivo* para visualizar los datos en el instrumento.

9.8 Añadir datos a archivos existentes

Para añadir nuevos datos a un archivo ya existente, la actual entrada y el sensor deben configurarse de igual manera que cuando se creó el archivo. Los siguientes procedimientos han de ser los mismos:

- Sensores activados (referencia Sección 4 Sensores)
- **Barómetro de Almacenamiento** (referencia Sección 9.3 Almacenamiento de las lecturas de Barómetro almacenadas)
- Numero de almacenamiento de sitio(referencia Sección 9.4 Como Crear una lista de Sitios)

Si la configuración de entrada actual no es exactamente la misma que cuando el archivo fue creado, se visualizara en la pantalla un error de correspondencia (mis match).

Imagen 9.14 Pantalla de falta de correspondencia de Parámetro

NOTA: La columna de la derecha muestra los parámetros usados cuando se creó el archivo. La columna de la izquierda muestra los parámetros actuales.

1. Presione la Flecha de Abajo para deslizarse hacia abajo para encontrar las inconsistencias.

Mis match	Acción	Referencia
Sensor(es) no encontrado en la columna de la izquierda	Activar el correspondiente sensor	Sección 4 Sensores
Se lista un sensor extra en la columna de la izquierda	Desactivar el correspondiente sensor	Sección 4 Sensores
Barómetro no encontrado en la columna de la izquierda pero si presente en la columna de la derecha.	Activar la configuración del Barómetro de Almacenado.	Sección 9.3 Almacenamiento de las lecturas de Barómetro almacenadas
Barómetro presente en la columna de la izquierda, pero no se encuentra en la columna de la derecha.	Desactivar la configuración del Barómetro de Almacenado	Sección 9.3 Almacenamiento de las lecturas de Barómetro almacenadas

2. Use el siguiente cuadro para resolver las inconsistencias.

Numero de Almacenamiento de sitio no encontrado en la columna de la izquierda pero si presente en la columna de la derecha.	Activar el número de almacenamiento del sitio.	Sección 9.4 Como Crear una lista de Sitios
Numero de almacenamiento de sitio presente en la columna de la izquierda pero no encontrado en la de la derecha.	Desactivar el Número de Almacenamiento del sitio.	Sección 9.4 Como Crear una lista de Sitios

3. Vuelva a la sección 9.6 Ingreso de Datos Sin Lista de Sitios o 9.7 Ingreso de datos con lista de sitios.

10. Configuración del sistema

El YSI 556 MPS tiene una serie de características que son seleccionadas por el usuario o pueden ser configuradas según sus preferencias. La mayoría de estas opciones se podrán encontrar en el menú de Configuración del sistema.

10.1 Acceso a la configuración del sistema

- **1.** Pulse la tecla de Encendido/Apagado para visualizar la pantalla. Ver Imagen 2.1 Parte delantera del YSI 556 MPS.
- 2. Pulse Escape para visualizar la pantalla del menú principal.
- **3.** Use las flechas para seleccionar la opción de Configuración del sistema.

Menu principal
Ejecutar
Informe
Sensor
Calibrado
Archivo
Cargando configuracion
Configuracion del Sistema
745.5mmHg 12/03/2003 15:25:34 ₪

Imagen 10.1 Menú Principal

4. Pulse **Enter.** Se visualizara la pantalla de configuración del sistema.

-Configuracion del Sistema-		
Version 1.07 03/20/2003		
Idioma:Español		
Fecha & hora		
Filtrar Datos		
desconectar tiempo(minutos		
□Coma radix		
ID=		
Numero de Serie del circuiț		
745.4mmHg		
12/03/2003 15:26:17		

Imagen 10.2 Pantalla de Configuración del Sistema

NOTA: La primera línea de la configuración del sistema muestra la versión actual de software del YSI 556 MPS. Como es posible introducir mejoras de software, usted será capaz de actualizar su YSI 556 MPS desde la Pagina Web YSI. Ver Sección *11.2 Actualización del YSI556* para más detalles.

10.2 Cambiar el Idioma

- 1. Vaya a la pantalla de configuración del sistema como se describe en Sección 10.1 Acceso a la Pantalla de Configuración del Sistema.
- 2. Use las teclas de flecha para resaltar la selección de **Idioma** en la pantalla de configuración del sistema. Presione **Enter** para abrir la pantalla de Idioma (Lenguaje).
- 3. Use las teclas de flecha para resaltar el **Idioma** deseado. Presione **Enter**.
- 4. Presione la tecla Escape repetidamente para regresar al menú Principal (Main).

10.3 Configuración de la Fecha y la Hora

- **1.** Vaya a la pantalla de Configuración del sistema según lo descrito en la Sección *10.1 Acceso a la configuración del sistema*.
- **2.** Use las flechas para seleccionar la opción de Fecha & Hora de la pantalla de configuración. Ver Imagen 10.2 Pantalla de Configuración del Sistema.
- **3.** Presione **Enter**. La configuración de la hora y el día se visualizara.

Imagen 10.3 Pantalla de Configuración de la fecha

NOTA: Un punto negro a la izquierda del formato de la fecha indica que ese es el formato seleccionado.

- 4. Use las flechas para seleccionar el formato de fecha deseado.
- **5.** Presione Enter.
- 6. Use las flechas para seleccionar la opción del año de 4-digitos.
- **7.** Presione **Enter**. Una marca de selección aparecerá en el cuadro al lado del formato de ano de 4-digitos.

NOTA: Si no está seleccionado, significa que se está usando un formato de 2-digitos.

- 8. Use las flechas para seleccionar la opción de Fecha.
- **9.** Presione **Enter**. Un cursor aparecerá sobre el primer número de la fecha.
- **10.** Introduzca el número apropiado con el teclado para el digito de la fecha seleccionada. El cursor se moverá automáticamente al siguiente digito. Refiérase a la Sección 2.9 Teclado para recibir más información sobre el teclado.
- **11.** Repita el paso 10 hasta que los dígitos sean correctos.
- **12.** Presione Enter para introducir la fecha específica.
- **13.** Use las flechas para seleccionar la opción de Hora.
- **14.** Presione **Enter**. El cursor aparecerá sobre el primer número de la opción de Hora.
- **15.** Ingrese el número apropiado con el teclado para el digito de la hora seleccionado. El cursor se moverá automáticamente al siguiente digito.

NOTA: Use el formato militar cuando ingrese la hora. Por ejemplo, 2:00 PM se ingresara como 14:00.

- **16.** Repita el paso 15 hasta que sean correctos todos los dígitos de la hora.
- **17.** Presione Enter para aceptar la hora correcta.
- **18.** Presione **Escape** repetidamente para volver a la pantalla principal.

10.4 Filtro de Datos

El Filtro de Datos es un filtro de software que elimina el "ruido" del sensor y proporciona lecturas más estables.

NOTA: YSI recomienda usar los valores establecidos en fábrica para el filtro de datos para la mayoría de aplicaciones de campo.

Sin embargo, los usuarios cuya principal preferencia es una rápida respuesta del sensor de oxigeno disuelto deben considerar la idea de cambiar la constante del tiempo asignado de 8 segundos a uno de 2 segundos. Este cambio puede hacerse de acuerdo con las instrucciones de la Sección *10.3 Filtro de Datos*. Como Cambiar la configuración del Filtro de Datos que vera seguidamente. La desventaja de reducir la constante del tiempo es que las lecturas del campo de pH pueden parecer de alguna manera algo inconsistentes si el cable está en funcionamiento.

10.4.1 Como cambiar la configuración del filtro de Datos

- **1.** Vaya a la pantalla de configuración del sistema según lo descrito en la Sección *10.1 Acceso a la configuración del sistema*.
- **2.** Use las flechas para seleccionar la opción del Filtro de Datos Ver Imagen 10.1 .
- **3.** Pulse **Enter.** Se visualizara la pantalla de Configuración del Filtro de Datos.

Imagen 10.4 Pantalla del filtro de Datos

- **4.** Con la selección de Activado, pulse Enter para activar o desactivar el filtro de Datos. Un punto negro a la izquierda de la selección indica que el filtro esta activado.
- 5. Use las flechas para seleccionar el campo Constante Tiempo.

NOTA: Este valor es la constante de tiempo en segundos para el filtro de datos del software. Incrementando la constante de tiempo producirá un mayor filtrado de datos, pero también una reducción en la rapidez de respuesta de los sensores.

- **6.** Use el teclado para introducir un valor. El valor de fábrica es 8 y este valor es ideal para la mayoría de las aplicaciones del 556. Según lo descrito en la Sección *10.3 Filtro de Datos* de arriba, los usuarios que deseen disminuir el tiempo de respuesta de las lecturas de oxigeno disuelto a expensas de inconsistencia de las lecturas de pH determinado, deben cambiar la constante de tiempo al valor de 2.
- 7. Pulse Enter para ingresar la constante de tiempo.
- 8. Use las flechas para seleccionar el campo Umbral.

NOTA: Este valor determina cuando el filtro de datos del software se conectara/desconectara, acelerando la respuesta a cambios grandes en la lectura. Cuando la diferencia entre dos lecturas consecutivas sea mayor que el umbral, entonces la lectura no será filtrada. Cuando la diferencia entre dos lecturas consecutivas sea menor que el umbral, las lecturas se filtraran otra vez.

- **9.** Use el teclado para ingresar el valor. El valor por defecto es 0.01.
- **10.** Pulse Enter para ingresar el umbral.
- **11.** Pulse la tecla de **Escape** repetidamente para volver a la pantalla del Menú Principal.

10.5 Temporarizador de apagado

El YSI 556 MPS se apaga automáticamente después de 30 minutos de inactividad. El tiempo de apagado puede ser modificado según lo descrito a continuación.

- **1.** Vaya a la pantalla de configuración del sistema según lo descrito en la Sección *10.2 Configuración de la Fecha y la Hora*.
- **2.** Use las flechas para seleccionar la opción de Temporizador de apagado en la pantalla de configuración del sistema. Ver Imagen 10.2 .
- **3.** Use el teclado para ingresar un valor de entre 0 y 60 minutos. El valor asignado en fábrica es 30 minutos.

NOTA: Para desactivar la función de apagado automático, ingrese el valor cero (0).

- **4.** Pulse **Enter** repetidamente para ingresar el tiempo correcto de apagado.
- **5.** Pulse **Escape** repetidamente para volver a la pantalla del menú principal.

10.6 Coma de Decimal

El usuario puede elegir entre el punto (asignado en fabrica) y la coma como marca de decimales, seleccionando esta opción y presionando Enter según se le indica a continuación.

- **1.** Vaya a la pantalla de configuración del sistema según lo descrito en la Sección *10.1 Acceso a la configuración del sistema*.
- **2.** Use las flechas para seleccionar la opción de Coma de Decimal en la pantalla de configuración del sistema. Ver Imagen 10.2 .
- **3.** Pulse **Enter**. Una marca de selección aparecerá en el cuadro al lado de la opción de Coma de decimal indicando que el símbolo que indica los decimales es una coma.

10.7 Identificación

Esta opción le permite ingresar un nombre/ número de identificación para su YSI 556 MPS. Este nombre/ número de identificación se ingresara en el titulo de cada archivo.

YSI 556 MPS

- **1.** Vaya a la pantalla de configuración del sistema según lo descrito en la Sección *10.1 Acceso a la configuración del sistema*.
- **2.** Use las flechas para seleccionar la opción de Identificación. Ver Imagen 10.1 .
- **3.** Use el teclado para ingresar una identificación alfanumérica de hasta 15 caracteres de longitud. Referencia sección 2.9 Uso del teclado.
- 4. Pulse Enter para introducir su identificación.
- **5.** Pulse **Escape** repetidamente para volver a la pantalla del menú principal.

10.8 Nombre de archivo GLP

Esta opción le permite ingresar un nombre diferente de archivo para los archivos almacenados de Calibración del YSI 556 MPS.

NOTA: El nombre de archivo asignado en fabrica es el "Numero de Serie 556 PC.glp."

- **1.** Vaya a la pantalla de configuración del sistema según lo descrito en la Sección *10.1 Acceso a la configuración del sistema*.
- **2.** Use las flechas para seleccionar la opción de Nombre de Archivo GLP. Ver Imagen 10.1 .
- **3.** Use el teclado para ingresar un nombre de archivo de hasta 8 caracteres de longitud. Refiérase a la Sección *2.9 Uso del Teclado*.
- 4. Pulse Enter para ingresar el nuevo nombre de archivo.

Pulse Escape repetidamente para volver a la pantalla del menú principal.

10.9 Constante TDS

Esta opción le permite configurar la constante usada para calcular Sólidos Disueltos Totales (Total Dissolved Solids (TDS)). TDS en g/L es calculado multiplicando esta constante por la conductancia específica en mS/cm.

10.9.1 Cambiando la Constante TDS

- **1.** Vaya a la pantalla de Configuración del sistema según lo descrito en la Sección *10.1 Acceso a la configuración del sistema*.
- **2.** Use las flechas para seleccionar la Constante TDS. Ver Imagen 10.1.
- **3.** Use el teclado para ingresar un valor. Refiérase a la Sección 2.9 Uso del Teclado. El valor por defecto es 0.65.
- 4. Pulse Enter para ingresar una constante TDS.
- **5.** Pulse **Escape** repetidamente para volver a la pantalla del menú principal.

10.10 Unidades Barométricas

La siguiente información es solo para aquellos instrumentos que tengan barómetro incluido.

Vaya a la pantalla de configuración del sistema según lo descrito en la Sección 10.1 Acceso a la configuración del sistema.

- **6.** Use las flechas para seleccionar la opción de Unidades barométricas en la pantalla de configuración del sistema. Ver Imagen 10.2 .
- 7. Pulse Enter. Las unidades Barométricas aparecerán en la pantalla.

Barometro	Unidades
©mmHg	
○inHg	
OmBar	
OPsi	
OAtm	
⊖KPa	
12/03/2003 15:42:47	745.2mmHg ≇

Imagen 10.5 Pantalla de las Unidades Barométricas

Un punto negro indicara las unidades barométricas actualmente seleccionadas.

- 8. Use las flechas para seleccionar la unidad barométrica deseada.
- **9.** Pulse **Enter** para seleccionar su elección. Un punto negro aparecerá en el círculo al lado de las unidades seleccionadas.
- 10. Pulse Escape repetidamente para volver a la pantalla principal.

10.11 Calibración del Barómetro

El barómetro opcional ha sido calibrado de fábrica para proveer una lectura precisa. Sin embargo, con el tiempo puede haber ocurrido alguna desviación en el sensor, requiriendo calibración ocasional por el usuario según se indica a continuación:

- **1.** Determine la presión barométrica de un barómetro de laboratorio independiente o de su servicio local meteorológico.
- **2.** Si la lectura de presión barométrica (BP) es de su estación meteorológica local, invierta la ecuación que la corrija a nivel del mar.

NOTA: Para que esta ecuación sea precisa, la presión barométrica debe estar en unidades de mm Hg.

BP Verdadero = (BP Corregido) – [2.5 * (Elevación Local/100)]

- **3.** Vaya a la pantalla de configuración del sistema según lo descrito en la *10.1 Acceso a la configuración del sistema*.
- **4.** Use las flechas para seleccionar la opción de Calibrado del Barómetro en la pantalla de configuración del sistema. Ver Imagen 10.2 .
- **5.** Pulse **Enter.** Se visualizara la pantalla de Calibración de Barómetro.

Barometro	Calibrado——
mmHg=745.2	
Baro offset:	0.0
	745 0mmHa
12/03/2003 15:43:40	745.Zimity

- **6.** Use el teclado para ingresar el valor conocido de presión barométrica según lo determinado en el paso 2.
- 7. Pulse Enter. La nueva lectura del barómetro se visualizara así como también el valor compensado de la lectura de fabrica (offset del barómetro).

NOTA: Para volver a la configuración de fabrica, reste el valor compensado (offset) al nuevo valor y repita los pasos de 5 a 7.

8. Pulse **Escape** repetidamente para volver a la pantalla de menú principal.

11. Mantenimiento

11.1 Cuidado del Sensor y Mantenimiento

Una vez que los sensores han sido instalados adecuadamente, recuerde que requieren limpieza periódica y cambio de membrana del sensor de oxigeno disuelto.

11.1.1 Sensor de Oxigeno Disuelto

Para obtener los mejores resultados, recomendamos que la solución de KCl y el tapón de la membrana se cambien al menos una vez cada 30 días, con más frecuencia dependiendo de la intensidad de uso y la calidad de agua que mide.

- Es importante reconocer que el oxigeno disuelto en la muestra se consume durante la operación del sensor. Es por tanto esencial que se mueva el sensor continuamente para asegurar movimiento constante de agua a través del sensor. Si no hay suficiente circulación de agua a través del sensor, las lecturas serán artificialmente bajas. Mueva mecánicamente el sensor constantemente mientras este midiendo oxigeno disuelto. Recomendamos que se mueva el sensor aproximadamente 30 cm por segundo (mociones repetitivas a mano de ida y vuelta a manera de péndulo)
- 2. La vida útil de la membrana depende del uso. Las membranas duraran más tiempo si se instalan adecuadamente y se tratan cuidadosamente. Las lecturas erróneas son resultado de membranas sueltas, arrugadas, dañadas o contaminadas, o con burbujas de aire (mas de 1/8" de diámetro) en el electrolito. Si obtiene lecturas erróneas o se dan evidencias de daños en la membrana, debe cambiar la membrana y la solución de electrolito. El intervalo medio de sustitución es de 2 a 4 semanas.
- **3.** Si la membrana está cubierta de materia orgánica (por ejemplo, bacterias o algas) pueden darse lecturas erróneas.
- **4.** El cloro, Dióxido de Sulfuro, Oxido Nítrico, y el oxido nitroso pueden afectar las lecturas. Si sospecha de lecturas erronas, puede ser necesario determinar si estos gases son la causa.

- **5.** Evite cualquier ambiente que contenga sustancias que puedan atacar la unidad de sonda y los materiales del sensor. Algunas de estas sustancias son ácidos concentrados, cáusticos y disolventes fuertes. Los materiales del sensor que están en contacto con la muestra incluyen Teflón FEP, plástico acrílico, goma EPR, acero inoxidable, epóxido, y la cubierta del cable de PVC.
- **6.** Es posible que el ánodo de plata, que es todo el cuerpo de plata del sensor, se contamine. Esto impedirá que se calibre con éxito. Para reparar el ánodo, refiérase a la sección 11.1.1 Limpieza del sensor, Ánodo de plata.
- 7. Para el correcto funcionamiento del sensor, el cátodo de oro debe estar siempre brillante. Si esta opaco (lo que puede resultar del contacto con ciertos gases) o cubierto de plata (lo que puede resultar de uso prolongado, de una membrana floja o arrugada) la superficie dorada debe ser restaurada. Para restaurar el cátodo, refiérase a la Sección 11.1.1 El sensor, Limpieza del Cátodo de oro.
- **8.** Para evitar que el electrolito se seque, guarde el sensor en la recipiente de transporte/calibración con al menos en 3 mm de agua.

Limpieza del Ando de Plata

Después de uso prolongado, empezara a aparecer una capa espesa de AgCl en el ánodo de plata, reduciendo la sensibilidad del sensor. El ánodo debe estar limpio para asegurar el buen funcionamiento del sensor. La limpieza puede ser química o mecánica.

Limpieza química: Quite el cartucho de la membrana y deje en remojo el ánodo completo en una solución de 14% de hidróxido de amonio durante 2 o 3 minutos, seguido de un <u>vigoroso enjuague</u> con agua destilada o desionizada. Debe secarse el ánodo con una servilleta de papel para eliminar toda capa residual del ánodo.

Limpieza Mecánica: Pula/ lije la capa oscura del ánodo de plata con una papel de lija de 400. Envuelva el ánodo con el papel de lija y gire el sensor. Enjuague el ánodo con agua limpia después de lijar, a continuación limpie bien con una servilleta de papel húmeda.
NOTA Después de la limpieza, se debe instalar un nuevo cartucho de membrana. Refiérase a la Sección *3.4.1 Instalación del Sensor*.

Gire el instrumento y espere que el sistema se estabilice durante al menos 30 minutos. Si, después de varias horas no es posible aun realizar una calibración, contacte a su distribuidor o al servicio al Cliente de YSI. Refiérase al *Apéndice E Servicio al Cliente*.

Limpieza del Cátodo de Oro

Para conseguir el funcionamiento correcto, el cátodo de oro debe tener una textura apropiada. Puede que se manche o se cubra de plata después de uso prolongado. Se debe limpiar el cátodo de oro usando un disco de lija y una herramienta proporcionada en el Kit de Reacondicionamiento de la Sonda YSI 5238.

Usando el papel de lija provisto en el Kit, lije suavemente el oro con un hasta que todo los depósitos de plata se eliminen y el oro vuelva a tener un acabado mate. Enjuague el cátodo con agua limpia después de lijar. A continuación, límpielo bien con una servilleta de papel. Si el cátodo aun aparece manchado o dañado, contacte a su distribuido o Servicio al Cliente. Referencia *Apéndice E Servicio al Cliente*.

NOTA: Después de la limpieza, debe instalarse un nuevo cartucho de membrana. Refiérase a la Sección *3.4.1 Instalación del Sensor*.

11.1.2 Sustitución del sensor de Oxigeno Disuelto

1. Quite la protección de la unidad de sonda.

PRECAUCION: Seque bien el sensor de tal forma que no entre agua en la entrada del sensor de unidad de sonda cuando se quite el sensor.

- **2.** Inserte la llave inglesa hexagonal dentro del agujero del lado de la ranura de la unidad de sonda. Gire la llave en el sentido de las agujas del reloj y saque la tuerca (usted no tiene que sacar del todo el tornillo para sacar el sensor)
- **3.** Saque el sensor de oxigeno de Oxigeno Disuelto de forma rígida del cuerpo de la unidad de sonda.

NOTA: El sensor de Oxigeno Disuelto no está enroscado, sino estriado de tal manera que no pueda ser sacado girando.

Imagen 11.1 Sustitución del Sensor de Oxigeno Disuelto

4. Inserte el nuevo sensor de Oxigeno Disuelto. Asegúrese de que el interior de la entrada del sensor y que la anilla del sensor están limpios, fuera de contaminantes, tales como grasa, suciedad o pelo. El sensor de Oxigeno Disuelto bien se enrosca o bien tiene una parte plana, con lo que no puede ser mal alineado.

NOTA: Asegúrese de que los botones del sensor de Oxigeno Disuelto estén fuera antes de que el set de tuercas sean insertadas.

5. Inserte la tuerca dentro del pequeño agujero en el lado de la ranura de la unidad de sonda, y gire en el sentido de las agujas del reloj para volver a enroscar.

PRECAUCION: Asegúrese de que no pase de rosca el set de tuercas. Use la llave hexagonal para apretarlos de una forma correcta, asegurándose de

que las tuercas no sobresalgan del lado de la ranura de la unidad de sonda. Si la protección de unidad de sonda no enrosca bien pueden ocasionarse daños.

NOTA: El sensor de Oxigeno Disuelto YSI 5563 será transportado seco. Encontrara que una membrana de transporte está instalada para proteger el sensor. Se deberá instalar un nuevo cartucho de membrana antes del primer uso. Refiérase a la Sección *3.4.1 Instalación del Sensor*.

11.1.3 Limpieza de YSI 5564 pH y Sensor de Combinación de sensor 5565 pH/ORP

Se requiere limpieza en cuanto aparezcan depósitos y contaminantes en las superficies del vidrio y/o platino de estos sensores o cuando la respuesta del sensor sea lenta.

- **1.** Saque el sensor de la unidad de sonda.
- 2. Inicialmente, use agua limpia y una tela limpia y suave, un pañuelo de papel limpiador de lentes, o un poco de algodón para quitar todo los materiales extraños de la bombilla de cristal (YSI 5564 y YSI 5565) y del botón de platino (YSI 5565). Después use un algodón humedecido para quitar cuidadosamente todo material que este bloqueando el empalme del electrodo del sensor.

PRECAUCION: Cuando esté usando un algodón con el YSI 5564 o con YSI 5565, tenga cuidado de no aprisionar la punta del algodón entre la protección y el sensor de cristal. Si es necesario, quite el algodón para que el algodón pueda alcanzar todas las partes del sensor sin aprisionarlo.

NOTA: Si la respuesta de pH y/o del ORP no es restablecida después del procedimiento indicado anteriormente, siga las siguientes indicaciones adicionales:

- **1.** Humedezca el sensor durante 10-15 minutos en agua limpia conteniendo algunas gotas de líquido comercial lavavajillas.
- **2.** Limpie bien la bombilla de cristal con un algodón humedecido en la solución limpiadora.
- **3.** Enjuague el sensor en agua limpia, limpie con un algodón empapado en agua limpia, y después vuelva a enjuagar con agua limpia.

NOTA: Si la respuesta apropiada de pH y/o de ORP aun no está restablecida, siga las siguientes indicaciones:

- Deje en remojo el sensor durante 30-60 minutos en un molar (1 M) de Acido Hydrocloridrico (HCl) Este reactivo puede ser adquirido en la mayoría de los distribuidores de limpiadores industriales. <u>Asegúrese de seguir las instrucciones de</u> <u>seguridad incluidas en el acido</u>.
- **2.** Limpie bien la bombilla de cristal y el fondo de platino con un algodón humedecido en el acido.
- **3.** Enjuague el sensor en agua limpia, limpie con un algodón empapado en agua. Para asegurarse de eliminar todo rastro de acido del sensor, deje en remojo el sensor en agua limpia durante una hora.

NOTA: Si se sospecha contaminación biológica en el empalme de referencia o si la respuesta no está restablecida mediante los procedimientos anteriormente indicados, siga los siguientes pasos de limpieza:

- **1.** Deje en remojo el sensor durante aproximadamente 1 hora en una dilución comercial de cloro de 1 por 1 agua.
- 2. Enjuague el sensor con agua limpia y después déjelo en remojo durante al menos 1 hora en agua limpia moviendo de vez en cuando para eliminar el cloro restante del empalme. (Si es posible, deje en remojo el sensor durante un periodo mayor a 1 hora para asegurarse de que todo residuo de cloro este eliminado) Vuelva a enjuagar el sensor con agua limpia y vuelva a probar.

11.1.4 Limpieza del Sensor Temperatura/Conductividad

El único y más importante requisito para obtener precisión en los resultados en la medición de conductividad es un sensor limpio. Un sensor sucio cambiara la conductividad de una solución contaminándola. El pequeño cepillo de limpieza incluido en el Kit de Mantenimiento del YSI 5511 es ideal para esta finalidad.

Para limpiar el sensor de conductividad.

- **1.** Sumerja el cepillo en agua limpia e insértelo en cada uno de los agujeros unas 15-20 veces.
- 2. Enjuague el sensor en agua deisonizada o del grifo.

NOTA: En el caso de que encuentre depósitos en los electrodos, siga el siguiente procedimiento:

- Use una solución de detergente suave además del cepillo. Humedezca el cepillo en la solución e insértelo en cada uno de los agujeros unas 15-20 veces.
- 2. Enjuague el sensor en agua deionizada o del grifo.

NOTA: Después de la limpieza, compruebe la respuesta y precisión del sensor de conductividad con una calibración estándar.

NOTA: Si este procedimiento no tiene éxito o el funcionamiento del sensor es inadecuado, puede ser necesario enviar el sensor a un servicio técnico autorizado YSI para su arreglo. Refiérase a *Apéndice E Servicio al Cliente*.

La parte de la temperatura del sensor no requiere mantenimiento.

11.2 Actualizar el Software del YSI 556 MPS

- Usted tiene la posibilidad de acceder a las páginas de descargas del software de YSI Environmental según lo descrito en el *Apéndice G EcoWatch* Paso 1 al 3.
- **2.** Haga click en el link "Actualización del Software de YSI" (**YSI Instruments Software Updates**) (o deslícese hacia abajo hasta que vea YSI 556 MPS).
- **3.** Haga click en el icono del archivo a la derecha de la lista del **YSI 556 MPS** y guarde el archivo en un directorio temporal de su computador.
- **4.** Cuando la descarga se complete, abra el archivo (que acaba de bajar) y siga las instrucciones de la pantalla para instalar el YSI Code Updater en su computador. Si encuentra dificultades,

contacte el Servicio al cliente para recibir consejo. Referencia *Apéndice E Servicio al Cliente.*

- **5.** Si es necesario, desconecte la unidad de sonda YSI 5563 del instrumento YSI 556.
- **6.** Conecte el YSI 556 MPS a una entrada de serie de su computador mediante el cable interface 655173. Ver Imagen 8.6
- **7.** Presione el botón de Encendido/Apagado en el YSI 556 MPS para visualizar la pantalla.
- **8.** Abra el Software YSI Code Updater software que usted acaba de instalar en su computador. Se visualizara la siguiente pantalla:

	— Seleccionar EntradaComm
About Help Comm port: 1 Start code update	Haga click en empezar la actualizacion

9. Ingrese el numero de entrada de comm que equivalga a la entrada que usted conecto en el Cable interface 655173. Después haga Click en Comenzar la Actualización de Códigos.

La pantalla del YSI 556 MPS se pondrá en blanco y se visualizara el indicador del progreso en el PC.

踶 YSI Code l	Jpdater	_ 🗆 X
<u>A</u> bout <u>H</u> elp		
Comm port: 1		
Baud: 9600		
	Time left: 00:03:16	
	6%	

Cuando la actualización se termine (se indicara en la pantalla del PC), el YSI 556 MPS volverá a la pantalla de Ejecutar. Ver Imagen 7.1 .

🚜 YSI Code U	pdater 🗕	
<u>A</u> bout <u>H</u> elp		
Comm port: 1 Baud: 9600	Start code update	
	Update complete.	

- **10.** Cierre la ventana del Actualizador del Código del YSI Code (en el PC) haciendo click en la "X" en la esquina derecha superior de la ventana.
- **11.** Desconecte el YSI 556 MPS del cable interface 655173 del PC y reconéctelo en la Unidad de Sonda YSI 5563. Refiérase a la Sección *3.6 Conexión del Instrumento/ Cable*.

12. Almacenamiento

Un almacenamiento apropiado durante periodos de no uso no solo alargara la vida de los sensores, sino que también asegurara que la unidad esté lista para uso tan pronto como sea posible en su próxima aplicación.

12.1 Recomendaciones Generales para el Almacenamiento a Corto Plazo

No importa que los sensores estén instalados en el instrumento, pero si es importante mantenerlos humedecidos sin sumergirlos en liquido. Sumergirlos puede causar en algunos de ellos desviaciones y una vida útil más corta.

YSI recomienda que el almacenamiento a corto plazo de todos los instrumentos multiparametros se haga colocándolos en aproximadamente ¹/₂ pulgada de agua del grifo en la recipiente transporte/calibración que es proporcionada con el instrumento y mediante la colocación de la unidad de sonda con los sensores instalados dentro del recipiente. El uso de una esponja humedecida en vez de ¹/₂ pulgada de agua del grifo es también aceptable, siempre que la presencia no comprometa la unión del recipiente a la unidad de sonda. La recipiente de transporte/calibración debe cerrarse bien para evitar evaporación.

NOTA: Asegúrese de que la anilla este instalada en la ranura de la terminación enroscada del cuerpo de la unidad de sonda. Ver Imagen 3.7 .

PRECAUCION: El nivel de agua tiene que ser suficientemente bajo para que ninguno de los sensores este sumergido. Revise la recipiente de transporte/calibración periódicamente para asegurarse de que el agua este todavía presente o que la esponja aun esta humedecida.

NOTA: Si el agua de almacenamiento (agua del grifo) se perdiera accidentalmente durante el uso de campo, puede usar temporalmente el agua del lugar (el agua que está midiendo).

12.2 Recomendaciones para un almacenamiento a Largo Plazo

12.2.1 Almacenamiento de la unidad de Sonda

1. Saque el sensor de pH o de pH/ORP de la unidad de sonda y guárdelo según las instrucciones sobre el almacenamiento de un sensor individual que puede encontrar en la Sección *12.2.2 Almacenamiento del sensor*.

2. Cierre la entrada ahora libre con la tapa provista.

NOTA: Deje los sensores de conductividad/temperatura y oxigeno disuelto, con el cartucho de la membrana todavía instalado, en la unidad de sonda.

- **3.** Coloque 1/2" de agua, deionizada, destilada o del grifo en la recipiente de transporte/calibración.
- PRECAUCION: El nivel del agua tiene que ser lo suficientemente bajo para que ninguno de los sensores este sumergido totalmente bajo el agua. Revise la recipiente de transporte/calibración periódicamente para asegurarse de que el agua este presente o que la esponja sigue húmeda.
- 4. Inserte la unidad de sonda en la recipiente.

NOTA: Asegúrese de que una anilla se encuentre instalada en la ranura de la parte enroscada del final del cuerpo de la unidad de sonda. Ver Imagen 3.7.

12.2.2 Almacenamiento del Sensor

Sensor de Temperatura/Conductividad

No se requieren cuidado especial. El sensor puede ser almacenado tanto seco como húmedo, siempre que las soluciones en contacto termistor y los electrodos de conductividad no sean corrosivos (por ejemplo, el cloro). Sin embargo, es recomendable limpiar el sensor con el cepillo proporcionado antes de almacenarlo durante un largo tiempo. Refiérase a la Sección 11.1.4 *Limpieza del Sensor Temperatura/Conductividad*.

Sensor de pH y Sensor de pH/ORP

La clave para el almacenamiento del sensor es asegurarse de que el empalme del electrodo de referencia no se seque. Los empalmes que se han dejado secar debido a un procedimiento indebido de almacenamiento pueden generalmente rehidratarse dejando en remojo el sensor durante varias horas (es recomendable que sea durante la noche) en una solución de 2 molares en Cloro Potásico. Si esta solución no está disponible, dejar en remojo el sensor en agua del grifo o en solución buffer de pH comercial. Esto puede en algunos casos restablecer el funcionamiento del sensor. Sin embargo, en algunos casos el sensor puede estar dañado irreparablemente por la deshidratación y requerirá la sustitución.

PRECAUCION: No almacenar el sensor en agua destilada o deionizada ya que el cristal del sensor puede dañarse por la exposición a este medio.

- **1.** Saque el sensor pH o pH/ORP de la unidad de sonda.
- 2. Cierre la entrada ahora vacía con la tapa proporcionada.
- **3.** Coloque el sensor en el recipiente de almacenamiento (un bote de plástico) que ha sido provisto con el sensor. El recipiente debe contener una solución de 2 molares de Cloro Potásico.

NOTA: Asegúrese de que el recipiente está bien cerrado para evitar la evaporación de la solución de almacenamiento.

13. Resolución de Problemas

Las siguientes secciones describen problemas con los que usted puede encontrarse cuando usa el YSI 556 MPS y proporciona sugerencias para resolverlos.

PROBLEMA	SOLUCION POSIBLE
Problemas de Visualización	
No se visualiza nada después de pulsar el botón de encendido/apagado.	Si usa pilas, asegúrese de que están correctamente instaladas en relación a la polaridad y de que se usan buenas pilas. Si usa la batería opcional recargable, coloque el pack en el instrumento y cargue durante 30 minutos.
El software del instrumento parece estar bloqueado ya que no responde a entradas en el teclado o no cambia.	Primero, intente resetear el instrumento simplemente apagándolo y encendiéndolo otra vez. Si esto no funciona, saque la batería del instrumento durante 30 segundos y vuelva a colocarlas. Si usa pilas, quite la tapa de la batería o de las pilas. Si usa la batería opcional recargable, sáquela enteramente del instrumento. Después de 30 segundos, vuelva a colocar la batería o pilas y vuelva a comprobar su funcionamiento.
La pantalla del 556 parpadea y los altavoces del instrumento hacen un ruido continuo de chasquido.	La batería es baja. Cambie las pilas o recargue la batería del 6117.
Daños con agua al instrumento	
El compartimento de la batería parece gotear cuando se están usando pilas.	Coloque correctamente las pilas. Seque el compartimento de la batería usando si es posible aire comprimido.
Ha entrado en contacto agua en la batería recargable.	Saque la batería inmediatamente. Mande la batería al Servicio Técnico de YSI para su evaluación. PRECAUCION: NO VUELVA A USAR LA BATERIA HASTA QUE EL SERVICIO TECNICO DE YSI LA HAYA EVALUADO.
Se sospecha goteo en la cavidad principal del instrumento.	Saque las pilas inmediatamente. Envíe el instrumento al Servicio Técnico de YSI.

PROBLEMA	SOLUCION POSIBLE
Cargador Opcional de Encendeo	lor de Cigarros
Cable del fusible estropeado	1. Desenrosque la tapa del adaptador y quite la punta y saque el fusible.
Power Cord	2. Cambie el fusible por uno nuevo de 2-amp de una tienda de electrónica.
(Positive Tip)	3. Vuelva a colocar el adaptador y enrosque bien la tapa en el cuerpo del adaptador.
Problemas de Archivo	
La transferencia los archivos desde el YSI 556 MPS no es posible.	 Asegúrese de que el cable está conectado correctamente tanto a al 556 como al PC. Asegúrese de que la entrada Comm correcta este seleccionada en el Eco Watch para Windows
Los datos barométricos no se almacenan con el archivo de datos del sensor.	Asegúrese de que el Almacenamiento del Barómetro este activo en el Menú de Registro del 556.
Las descripciones del sitio en la lista de sitios están inactivas y no disponibles para archivos adicionales de datos.	Hay un parámetro no correspondiente entre la configuración actual del 556 y la configuración inicial. Cambie el actual registro para así corresponder con la configuración que se uso inicialmente para crear el archivo.
Problemas del Sensor	
La lectura del Oxigeno Disuelto es inestable o imprecisa. Durante	El sensor no ha sido calibrado correctamente. Siga el procedimiento de calibración de Oxigeno Disuelto.
el calibrado aparece un mensaje de "fuera de rango".	La Membrana no está bien instalada o puede estar pinchada. Cambie el cartucho de la membrana.
	Los electrodos del sensor de Oxigeno Disuelto requieren una limpieza. Siga los procedimientos de limpieza del sensor de Oxigeno Disuelto.
	Agua en el conector del sensor. Seque el conector y reinstale el sensor.
	Algas u otros residuos contaminantes en el sensor de Oxigeno Disuelto. Enjuague el sensor con agua limpia.
	La entrada de presión barométrica es incorrecta. Repita el procedimiento de calibración del sensor de oxigeno disuelto.
	Calibración a temperatura extrema. Volver a calibrar a la temperatura de la muestra (o parecido).

	El sensor de Oxigeno Disuelto ha sido dañado. Sustituir el sensor.
	Error interno. Envíe la unidad de sonda para su evaluación.
PROBLEMA	SOLUCION POSIBLE
Problemas del Sensor	
Las lecturas de pH u ORP son inestables o imprecisas. El	El sensor requiere una limpieza. Siga las instrucciones para la limpieza del sensor.
mensaje de "Fuera de rango" aparece durante la calibración.	El sensor requiere calibración. Siga las instrucciones sobre calibración.
	El empalme del sensor de referencia pH se ha secado por almacenamiento inapropiado. Déjelo en remojo en agua del grifo o solución buffer hasta que las lecturas vuelvan a ser estables.
	Agua en el conector del sensor. Séquelo y vuelva a instalar el sensor.
	Se ha dañado el sensor. Sustituya el sensor.
	Las soluciones de calibración están contaminadas. Use soluciones de calibración nuevas.
	El sensor ORP no funciona con Zobell. Tenga en cuenta la dependencia de la temperatura de las lecturas de la solución de Zobell.
	Error Interno. Envíe la unidad de sonda para su evaluación.
Conductividad inestable o imprecisa. El mensaje "fuera de	Conductividad incorrectamente calibrada. Siga el procedimiento para la calibración.
rango" aparece en la pantalla durante calibración.	El sensor conductividad requiere limpieza. Siga las instrucciones de limpieza.
	Sensor conductividad dañado. Sustituya el sensor.
	La solución de calibración está contaminada. Use una nueva solución de calibración.
	Error Interno. Envié la unidad de sonda para su evaluación.
	La solución de calibración o la muestra no cubre enteramente el sensor. Sumerja el sensor completamente.
Temperatura, inestable o imprecisa.	Agua en el conector. Seque el conector, reinstale el sensor.
	Sensor dañado. Sustituya el sensor del 5560.

El sensor instalado no tiene	El sensor ha sido desactivado. Active el sensor.
lectura	Agua en el conector del sensor. Seque el conector, reinstale el sensor.
	Sensor dañado. Cambie el sensor.
	Informe de salida incorrectamente configurado. Configure bien el sensor.
	Error Interno. Envíe la unidad de sonda para su evaluación.

Si estas guías y pistas no le ayudan a corregir su problema o si ocurren otros síntomas diferentes, contacte el servicio al cliente de YSI para recibir consejo. Referencia *Apéndice E Servicio al Cliente*.

14. Apéndice A Especificaciones del YSI 556 MPS

Para especificaciones más recientes del producto, favor de visitar el sitio web de YSI: www.ysi.com

15. Apéndice B Accesorios del Instrumento

UNIDAD #	ACCESORIOS
5563-4	4m de Cable con DO/temp/conductividad
5563-10	10m de Cable con DO/temp/conductividad
5563-20	20m de Cable con DO/temp/conductividad
5564	pH Kit
5565	pH/ORP Kit
6118	Kit de batería recargable para el uso en EEUU
5094	Kit de batería recargable con una carga universal y 3 cables adaptadores para uso en aplicaciones internacionales.
5095	Kit de batería recargable con una carga universal y 2 cables adaptadores para uso en aplicaciones internacionales
5083	Unidad de flujo-la unidad de sonda está asegurada en la unidad de flujo y el agua del fondo se bombea a través de ella. Volumen desplazado approx. 475 ml
3059	Celda de flujo, volumen bajo. Volumen desplazado approx. 200 ml
116505	Tapa de batería
616	Cargador, Encendedor de Cigarros – se usa para cargar la batería del instrumento desde el encendedor de cigarros del automóvil.
4654	Trípode
614	Ultra Pinza, C Pinza –se usa para sujetar el instrumento a una mesa o una superficie del automóvil
6081	Funda de transporte grande, dura
5085	Arnés de manos libres
5065	Funda para el trasporte, Adaptable, para el uso en el campo-tiene una ventana de vinilo, un asa para el hombro, un asa curvada y otra asa de mano.

16. Apéndice C Advertencias de la Comisión Federal de Comunicaciones

La Comisión Federal de Comunicaciones define este producto como un dispositivo de computador y requiere la siguiente advertencia.

Este equipo genera y usa energía de radio frecuencia y si no se instala y usa correctamente, puede causar interferencias en la recepción de radio y televisión. Se ha comprobado que cumple con los límites de los aparatos informáticos de la clase A y B de acuerdo con las especificaciones de la Subparte J de la parte 15 de las reglas de FCC, que están diseñadas para proporcionar una protección razonable contra las interferencias en instalaciones residenciales. Sin embargo, no existe garantía de que no causara interferencia en la recepción de radio y televisión, lo que puede advertirse con encender y apagar el equipo. Se aconseja al usuario a corregir la interferencia usando las siguientes medidas:

- Reoriente la antena receptora.
- Relocalice el computador con respecto a su receptor.
- Mueva el computador lejos del receptor.
- Enchufe el computador en otro sitio diferente para que el computador y el receptor estén en distintos circuitos de ramal.

Si es necesario, el usuario puede contactar el distribuidor o un técnico experto de radio/televisión para sugerencias adicionales. El usuario puede encontrar útil el siguiente folleto, preparado por la Comisión Federal de Comunicaciones."Como identificar y resolver problemas de interferencia en Radio/TV". Este folleto está disponible en la oficina de artículos del Gobierno de EEUU, Washington, D.C 20402, Stock No.0004-000-00345-4.

17. Apéndice D Salud y Seguridad

Soluciones de Conductividad de YSI: 3161, 3163, 3165, 3167, 3168, 3169

INGREDIENTES:

- θ Yoduro
- θ Cloruro de Potasio
- θ Agua

ADVERTENCIA: LA INHALACION PUEDE SER FATAL

PRECAUCION: EVITE LA INHALACION, EL CONTACTO CON LA PIEL, CON LOS OJOS O LA INGESTION. PUEDE EVOLUCIONAR EN GASES TOXICOS CUANDO HAY FUEGO.

Dañino cuando se ingiere o inhala. El contacto con la piel o los ojos puede causar irritación. Tiene un efecto corrosivo en el tramo gastrointestinal, causando dolor abdominal, vómitos y diarrea. Si existe híper-sensibilidad puede causar conjuntivitis, bronquitis, escozor en la piel, etc. Existe evidencia de que los efectos se reproduzcan.

PRIMEROS AUXILIOS

INHALACION: Saque a la víctima del área de exposición. Mantenga a la victima abrigada y descansando. En casos graves busque atención médica.

CONTACTO CON LA PIEL: Quite la ropa contaminada inmediatamente. Lave la zona afectada con grandes cantidades de agua. En casos graves, busque ayuda médica.

CONTACTO CON LOS OJOS: Lave los ojos inmediatamente con grandes cantidades de agua (aproximadamente durante 10 minutos) Busque ayuda médica inmediatamente.

INGESTION: Lave la boca con grandes cantidades de agua. Busque ayuda médica inmediatamente.

Soluciones buffer YSI pH 4.00, 7.00, y 10.00: 3821, 3822, 3823

pH 4 INGREDIENTES:

- θ Falatohidrogeno potásico
- θ Formalaldehido
- θ Agua

pH 7 INGREDIENTES:

- θ Fosfato Sódico, Dibasico
- θ Fosfato Potásico, Monobásico
- θ Agua

pH 10 INGREDIENTS:

- θ Tetraborato Potásico
- θ Carbonato Potásico
- θ Hidróxido Potásico
- θ Tetracetatodietilendiamina Sódica (AEDT)
- θ Agua

A precaucion – evite la inhalacion, el contacto con la piel u ojos o la ingestion. puede afectar a las membranas mucosas.

La Inhalación puede causar irritaciones severas y ser muy dañinas. El contacto con la piel puede causar irritación, una exposición prolongada o repetida puede causar dermatitis. El contacto con los ojos puede causar irritación o conjuntivitis. La ingestión puede causar nauseas, vómitos y diarrea.

PRIMEROS AUXILIOS

INHALACION – Saque a la victima de la zona de exposición hacia el aire fresco inmediatamente. Si ha parado de respirar, aplique respiración artificial. Mantenga a la victima abrigada y descansando. Busque ayuda médica inmediatamente.

CONTACTO CON LA PIEL – Quite la ropa contaminada inmediatamente. Lave la zona afectada con jabón o detergente suave y

Salud y Seguridad

con cantidades grandes de agua (aproximadamente durante 15-20 minutos) Busque ayuda médica inmediatamente.

CONTACTO CON LOS OJOS – Lave los ojos inmediatamente con grandes cantidades de agua (aprox. 15-20 minutos), levantando de vez en cuando los parpados. Buscar ayuda médica inmediatamente.

INGESTION – Si la victima sigue consciente, de inmediatamente de 2 a 4 vasos de agua y provoque el vomito tocándole el fondo de la garganta con los dedos. Busque ayuda médica inmediatamente.

Solución Zobell YSI: 3682

INGREDIENTES:

- θ Cloruro Potásico
- θ Falatohidrogeno potásico
- θ Ferricianuro Potásico Trihidratado

▲ *PRECAUCION* – EVITE LA INHALACION, EL CONTACTO CON LOS OJOS Y PIEL O LA INGESTION. PEUDE AFECTAR A LAS MEMBRANAS MUCOSAS.

Puede ser dañina la inhalación, ingestión o la absorción cutánea. Causa irritación de los ojos y de la piel. El Material causa irritación a las mucosas y a la tráquea respiratoria. Las propiedades químicas, físicas y toxicas no se han investigado detenidamente.

La Ingestión de grandes cantidades puede causar debilidad, irritación gastrointestinal o dificultades respiratorias.

PRIMEROS AUXILIOS

INHALACION – Saque a la victima de la zona de exposición hacia el aire fresco. Si ha parado de respirar, aplique respiración artificial. Mantenga a la victima abrigada y descansando. Busque asistencia médica.

CONTACTO CON LA PIEL – Quite la ropa contaminada inmediatamente. Lave la zona afectada con jabón o detergente suave y grandes cantidades de agua (aprox. 15-20 minutos). Busque asistencia médica. CONTACTO CON LOS OJOS – Lave los ojos inmediatamente con grandes cantidades de agua (aprox. 15-20 minutos), levantando de vez en cuando los parpados. Busque ayuda médica.

INGESTION – Si la victima está consciente, de inmediatamente de 2 a 4 vasos de agua y provoque el vomito tocándole el fondo de la garganta. Busque asistencia médica.

18. Apéndice E Servicio al Cliente

18.1 Pedidos y Servicio Técnico

Teléfono:	800 897 4151 (EE. UU.)
	+1 937 767 7241 (internacional)
	Lunes a viernes, de 8:00 a 17:00 (hora del Este de los EE.UU.)
Fax:	+1 937 767 9353 (pedidos)
	+1 937 767 1058 (servicio técnico)
Correo electrónico:	environmental@ysi.com o proseries@ysi.com
Dirección postal:	YSI Incorporated
	1725 Brannum Lane
	Yellow Springs, OH 45387
	EE. UU.
Internet:	www.ysi.com

18.2 Información de Servicio

YSI tiene centros de mantenimiento y reparaciones autorizados en todo el territorio de los Estados Unidos y también en otros países. Para información sobre el Centro de Mantenimiento y Reparaciones más cercano, visite el sitio web www.ysi.com y haga clic en "Support" (Ayuda) o comuníquese directamente con el servicio técnico de YSI llamando al 800-897-4151 (desde EE.UU.).

Al devolver un producto para su mantenimiento o reparación, incluya el formulario de devolución del producto con su certificación de limpieza. El formulario debe rellenarse completamente para que un Centro de Mantenimiento y Reparaciones de YSI acepte el instrumento para su reparación. El formulario se puede descargar en www.ysi.com haciendo clic en la ficha "Support" (Ayuda) y, a continuación, en el botón Product Return Form (formulario de devolución del producto).

Servicio al Cliente 18.3 Instrucciones de limpieza

Los equipos expuestos a materiales biológicos, radioactivos, o materiales tóxicos deben ser limpiados y desinfectados antes de ser enviados al servicio. Se entiende por contaminación biológica en cualquier instrumento, sonda u otro aparato que ha sido usado con tejidos o fluidos corporales. Se entiende por contaminación radioactiva como cualquier instrumento, sonda u otro aparato que haya sido usado cerca de fuentes radioactivas.

Si se presenta un instrumento, sonda u otra parte en el servicio sin un certificado de limpieza, y si en nuestra opinión representa un peligro potencial biológico o radioactivo, nuestro personal de servicio se reserva el derecho a retener el servicio hasta que se haya completado correctamente un certificado o se haya procedido a una limpieza o desinfección. Contactaremos con la persona que lo envíe para recibir instrucciones de su disposición. Los costos de disposición serán responsabilidad del remitente.

Si se requiere un servicio, tanto en el servicio del usuario como en el Servicio Técnico, se deben seguir los siguientes pasos para asegurar la seguridad de nuestro personal de servicio:

- De manera especial con cada aparato, desinfecte todas las superficies expuestas, incluyendo todos los recipientes.70% isopropyl alcohol o una solución de 1/4-de envase de cloro y un galón de agua de grifo es suficiente para la mayoría de las desinfecciones. Los instrumentos que se usen con agua no potable pueden ser desinfectados con .5% Lysol si esto es más conveniente para el usuario.
- El usuario debe tomar precauciones normales para evitar contaminación radioactiva y debe seguir procedimientos apropiados de descontaminación si ocurre la exposición.
- Si ha ocurrido una exposición, el cliente debe certificar que se ha llevado a cabo una descontaminación y que no se detecta ninguna radioactividad.
- Todo producto que haya sido devuelto al centro de reparaciones de YSI, ha de estar empacado de forma segura para prevenir cualquier daño.
- La limpieza debe completarse y certificarse en cualquier producto antes de enviarlo a YSI.

Apendice E 18.4 Procedimiento para el Empaque

- Limpie y desinfecte todos los artículos para asegurar la seguridad del manipulador.
- Complete e incluya el Certificado de Limpieza.
- Coloque el producto en una bolsa de plástico para separar el instrumento del material a empaquetar.
- Use un cartón grade, preferiblemente la caja original, y envuelva el producto completamente con el material de empaque.
- Asegure por el valor del reembolso del producto.

18.5 Garantía

El instrumento tiene una garantía de 3 años contra defectos en fabricación y materiales cuando se usa para finalidades listadas y se ha llevado un mantenimiento apropiado según las instrucciones. La unidad de sonda y los cables tienen una garantía de un año. Los sensores de Oxigeno Disuelto, Temperatura/Conductividad, pH, y combinación de pH/ORP tienen una garantía de un año. El daño causado por accidentes, uso incorrecto, maltrato o mantenimiento incorrecto no está cubierto. El periodo de garantía para productos químicos y reactivos está determinado por la fecha de caducidad que indiquen sus respectivas etiquetas. Dentro del periodo de garantía, YSI reparara o sustituirá, de manera gratuita, cualquier producto que YSI determine que está cubierto por esta garantía.

Para ejecutar esta garantía, escriba o llame a su representante local de YSI o contacte el Servicio al Cliente de YSI en Yellow Springs, Ohio. Mande el producto junto con la prueba de compra, y los gastos de transporte previamente pagados, al Centro Autorizado de Servicio seleccionado por YSI. La reparación o sustitución están garantizados por el total del periodo de garantía original, o al menos 90 días desde la fecha de reparación o sustitución.

Limitación de Garantía

Esta garantía no se aplicara a ningún producto de YSI dañado o con mal funcionamiento causado por (i) instalación incorrecta, ejecución incorrecta o mal uso en contra de las instrucciones escritas de YSI, (ii) abuso o mal uso del producto, (iii) mantenimiento incorrecto del producto según las instrucciones de YSI o el procedimiento industrial estándar, (iv) reparaciones inapropiadas del producto, (v) uso inapropiado de los componentes o partes debido a reparación o sustitución en curso, o (vi) modificación del producto de forma no autorizada por YSI.

ESTA GARANTIA PREVALECERA SOBRE OTRAS GARANTIAS, EXPRESADAS O IMPLICITAS, INCLUYENDO CUALQUIER TIPO DE GARANTIA DE COMERCIALIZACION O APTITUD PARA UNA FINALIDAD CONCRETA. LA RESPONSABILIDAD DE YSI DE ESTA GARANTIA ESTA LIMITADA A LA REPARACION O SUSTITUCION DEL PRODUCTO, Y ESTE DEBE SER EL UNICO Y EXCLUSIVO REMEDIO PARA CUALQUIER PRODUCTO DEFECTUOSO CUBIERTO POR ESTA GARANTIA. BAJO NINGUNA CIRCUNSTANCIA YSI SERA RESPONSIBLE DE OTROS DAÑOS ESPECIALES, INDIRECTOS, ACCIDENTALES O CONSIGUIENTES RESULTANTES DE DE CUALQUIER PRODUCTO DEFECTUOSO CUBIERTO POR ESTA GARANTIA.

19. Apéndice F Instalación del inductor

ADVERTENCIA: Si usa su YSI 556 en un país de la Comunidad Europea (CE), en Australia o Nueva Zelanda, debe ajustar una cuenta de hierro al cable interface del 655173 PC y del Cable Adaptador del Cargador del YSI 6117 para cumplir con los Limites Residenciales o Comerciales de la Clase B para emisiones de radio-frecuencia especificadas en EN55011 (CISPR11) para equipos de laboratorios Industriales, Científicos y Médicos. Este ensamblaje de hierro es proporcionado como parte de los kits de cables.

- 1. Haga un pequeño círculo (aproximadamente de 5 cm de diámetro) en el cable cerca del conector del YSI 556 MS-19.
- **2.** Deje abierto el inductor férrico debajo del círculo del cable de forma que cruce dentro del cilindro del inductor férrico.

Imagen 19.1 Instalación del Inductor férrico

- **3.** Junte las dos piezas del inductor asegurándose de que estén bien cerradas.
- **4.** Cuando haya completado la instalación, los cables del 655173 y del YSI 6117 deben parecerse a los siguientes dibujos.

Imagen 19.2 Cables con inductor instalado

20. Apéndice G EcoWatch

El EcoWatch[™] para Windows[™]debe usarse como el software interface de PC para el YSI 556 MPS. El EcoWatch es una herramienta muy poderosa que también puede usarse con sondas de la serie 6 de YSI. Muchas de las características del software solo se utilizaran por usuarios avanzados o no serán relevantes para el 556 MPS. Esta sección esta designada a proporcionar una tutoría para familiarizarse con las funciones más comúnmente usadas del Eco Watch, de tal forma que es posible:

- Transferir datos desde el 556 MPS al PC
- Recopilar gráficos e informes de sus datos.
- Concentrar la atención en ciertos segmentos de puntos de sus datos para facilitar su análisis.
- Mostrar datos estadísticos para sus estudios.
- Exportar datos en hojas de cálculo compatibles.
- Imprimir gráficos e informes.

Las características avanzadas del EcoWatch pueden ser estudiadas descargando el manual de la serie 6 de la página Web de YSI. (www.ysi.com), comprando una copia impresa del manual a través del Servicio al Cliente de YSI (Item # 069300), o utilizando la función de ayuda en-línea del software.

20.1 Como Instalar el EcoWatch para Windows

EcoWatch para Windows es disponible sin costo en el Web Site – www.ysi.com

20.2 Tutoría del EcoWatch

Esta tutoría sobre el EcoWatch está diseñada para enseñarle las operaciones mas comúnmente usadas asociadas con el software cuando usted usa el 556 MPS.

Cuando descargue un archivo, diríjase a la referencia 8.4 Transferir a PC, usted verá dos archivos en el directorio C:\ECOWWIN\DATA; el archivo que usted ha transferido y el archivo proporcionado por YSI designado como SAMPLE.DAT. Este archivo SAMPLE.DATA se refiere a la sección de tutoría. Después de seguir las instrucciones debajo del análisis de SAMPLE.DAT, podrá aplicar el mismo análisis al archivo de datos que fue descargado desde su 556 MPS para asegurar que usted está familiarizado con las características básicas y propiedades del EcoWatch para Windows.

Para empezar el análisis del archivo de SAMPLE.DAT, note que hay una barra de menú abreviada y que muchas de las herramientas de la barra aparecen como desactivadas o sombreadas antes de abrir el archivo (ver seguidamente).

La activación completa de las características del EcoWatch se efectuara cuando se abra el archivo.

Para abrir el archivo de datos de muestra.

- **1.** Haga Click en el botón de archivo i de la barra de herramientas.
- 2. Seleccione el archivo SAMPLE.DAT.
- **3.** Haga Click en **OK** para abrir el archivo

Aparecerá la siguiente pantalla:

Note que los datos de este archivo aparecerán como un grafico de temperatura, conductancia especifica, oxigeno disuelto, pH, ORP, y profundidad, todos en función del tiempo. Los gráficos tienen escala automática de tal forma que todos los datos se adaptaran y visualizaran en la pantalla. Note también que este archivo de datos fue obtenido con una sonda de serie 6 para la cual no está disponible el sensor profundidad. La profundidad NO es un parámetro actual del 556 MPS.

Los botones de **Tabla I** y **Grafico L** de la barra de herramientas pueden estar encendidos/apagados para mostrar o esconder el grafico o tabla respectivamente. Cuando se visualiza un grafico y una tabla al mismo tiempo, puede controlar el tamaño relativo de las dos hojas colocando el cursor sobre la pequeña barra que los se<u>para</u> y arrastrándola hasta el lugar

deseado. Haga Click en el botón **Tabla m** para generar la siguiente visualización dual de datos.

Ahora haga click en el botón de **Grafico** (apáguelo) para visualizar solo el informe de sus datos según lo descrito a continuación. Note que el

tamaño del informe puede ser variable haciendo click en los botones de

Eile Edt View Comm Bealtime Graph Setup Appl Window Help							
	DateTime	Temp	SpCond	DO Conc	рН	ORP	Depth
	M/D/Y	С	mS/cm	mg/L		mV	ft
	06/21/93 13:30:45	25.00	0.007	8.04	7.44	197	-0.415
	06/21/93 13:45:45	25.07	0.007	8.05	7.53	190	-0.415
	06/21/93 14:00:45	25.07	0.007	8.05	7.54	190	-0.415
	06/21/93 14:15:45	25.07	0.007	8.08	7.51	192	-0.415
	06/21/93 14:30:45	25.07	0.008	8.03	7.53	193	-0.669
	06/21/93 14:45:45	25.07	0.008	8.02	7.54	191	-0.669
	06/21/93 15:00:45	25.07	0.008	8.05	7.53	187	-0.669
	06/21/93 15:15:45	25.07	0.008	8.04	7.53	191	-0.669
	06/21/93 15:30:45	25.07	0.008	8.03	7.51	190	-0.669
	06/21/93 15:45:45	25.13	0.008	8.05	7.54	185	-0.669
	06/21/93 16:00:45	25.13	0.008	8.04	7.51	191	-0.669
	06/21/93 16:15:45	25.07	0.008	8.01	7.53	183	-0.669
	06/21/93 16:30:45	25.00	0.008	8.07	7.52	188	0.000
	06/21/93 16:45:45	25.00	0.008	8.04	7.57	182	0.000
	06/21/93 17:00:45	25.07	0.010	8.05	7.54	174	0.000
	06/21/93 17:15:45	26.50	0.010	7.88	7.56	174	0.323
	06/21/93 17:30:45	27.00	0.010	7.82	7.58	172	0.369
	06/21/93 17:45:45	27.07	0.010	7.80	7.60	169	0.069
	06/21/93 18:00:45	26.81	0.010	7.84	7.60	167	0.115
	06/21/93 18:15:45	26.50	0.010	7.87	7.60	165	0.115
	06/21/93 18:30:45	26.19	0.010	7.92	7.59	164	0.115
	06/21/93 18:45:45	25.80	0.010	7.95	7.59	161	0.115

y De la barra de herramientas.

Ahora vuelva a la visualización original del grafico apagando el botón

Tabla 🕮 y encendiendo el de Grafico 🔛

Desde el menú de Configuración, haga click en **Grafico**. Haga Click en **2 Parámetros por Grafico** y note que los parámetros ahora se dibujan en parejas para facilitar la comparación de los parámetros.

Haga Click en **1 Parámetro por Grafico** para volver a la visualización de la configuración original. Mueva el cursor a cualquier posición del grafico, después haga click y mantenga el botón derecho del ratón.

Note que la medida exacta para este punto del tiempo se visualiza a la izquierda del grafico. Mientras sujeta el botón derecho del ratón, muévase a otra zona del grafico. Note como las medidas cambian según usted se mueve. Cuando suelta el botón del botón, la visualización vuelve a la normal.

Para ver la información estadística para su estudio, haga click en el botón de

Estadísticas Σ_{\times} de la barra de herramientas. En la ventana de estadísticas , haga click en cualquier valor mínimo o máximo para visualizar el tiempo en el que ocurrió.

Después de ver las estadísticas, haga click en la "x" de la esquina superior derecha para cerrar la ventana y volver a la visualización normal.

Ahora haga click en el icono delimitador \square de la barra de herramientas y después mueva el icono visualizado hacia el grafico. Haga click en los puntos mostrados por líneas discontinuas mostradas en la pantalla de abajo, asegurándose de que el primer click está a la izquierda del segundo.

Apendice G

Los datos de entre los dos puntos seleccionados ahora se visualizaran en una resolución mas alta como se muestra a continuación.

Para volver al conjunto completo de datos, seleccione **Grafico** de la barra de herramientas y después haga click en **Cancelar Limites**.

Ahora seleccione el icono de la barra de herramientas para crear un nuevo archivo de datos que le permitirá importar datos a hojas de cálculo. Seleccione la configuración de exportación designada de fábrica para un archivo delimitado coma (.CDF) y pulse OK. Una nueva hoja de cálculo importable (SAMPLE.CDF) estará presente en la misma carpeta que el archivo SAMPLE.DAT.

Ahora seleccione el icono imprimir el estudio. Acepte la configuración asignada por defecto y pulse OK para completar la operación de impresión.

Finalmente, finalice la tutoría guardando la Visualización de Datos en el formato mostrado. En el menú Archivo. Pulse Guardar Visualización de Datos.

Después teclee "Por Defecto" en el campo de nombre de archivo y después **Guarde**. Los parámetros, colores, formato, y el intervalo de tiempo en el eje de las x asociado con la actual visualización ahora están guardados y podrá accederse a ellos en cualquier momento en el futuro. Se pueden guardar nueve visualizaciones posibles para cualquier archivo de datos. Usted podrá
Apendice G

cambiar fácilmente entre varias visualizaciones de datos. Se podrá acceder a los archivos de datos haciendo click en Visualización de conjuntos de datos del menú archivo y después seleccionando la presentación deseada.

20.2.1 Resumen de las opciones de la barra de herramientas

La barra de herramientas del EcoWatch incluye botones para algunos de los comandos más comunes en el EcoWatch, como Abrir Archivo. Para visualizar o esconder la barra de herramientas, abra el menú Ver y haga click en el comando Barra de Herramientas. Una marca de selección aparecerá al lado de ella cuando se active la barra de herramientas.

La barra de herramientas se visualizara a lo largo de la parte superior de la ventana, debajo de la barra del menú.

Haga click en ella para:

E) Para abrir un archivo existente de datos (.DAT). El EcoWatch visualizara el cuadro de dialogo de Abierto, en la que usted podrá localizar y abrir el archivo deseado.

Guarde la visualización de datos de los archivos de datos. El EcoWatch despliega un cuadro de dialogo Guardar visualización de Datos en el que usted puede sobrescribir sobre una visualización existente de datos o crear una nueva.

₹. Exporte datos en grafico en un formato de Window Meta File (.WMF) o como datos en un formato de Comma Delimited (.CDF)

È tabla.

Copie toda la página de grafico o los datos de una selección en una

Imprima la página del grafico actual o la pagina de la tabla dependiendo de cuál de ellos este activo.

Abra una nueva ventana para comunicarse con la sonda

Acceda a la Ayuda sobre el contexto (Shift+F1).

Encienda la ventana de la Tabla durante el procesado del archivo.

 Σ_{\times}^{\vee}

i

1↓

Þ

Encienda la ventana de grafico durante el procesado del archivo.

Visualiza estudios estadísticos.

Visualiza información del estudio.

Limite los datos para ser procesados en un estudio.

Agrande una porción seleccionada de un grafico.

Centre el grafico debajo del cursor.

Agrande el grafico o la tabla un 20%.

 \odot

~

 \mathfrak{D}

Reduzca el grafico o tabla un 20%.

Devolver un grafico o tabla a su estado normal (unzoom)

Volver a dibujar el grafico.

20.2.2 Otras Funciones

La tutoría anterior y la lista de funciones de la barra de herramientas proporcionan la información básica para permitirle ver y analizar los datos de campo que han sido almacenados en su 556 MPS. Algunas de las otras funciones más comunes del EcoWatch que el usuario podrá explorar están listadas a continuación:

- Personalice las unidades de cada parámetro, por ejemplo, informe en uS/cm en vez de mS/cm para la conductividad.
- Personalice el orden de parámetros en cada informe.
- Personalice los colores y fuentes de cada visualización de datos.
- Manualmente ajuste la escala del eje X / Y para cada parámetro.
- Fusione dos o más archivos de datos con formatos de parámetros compatibles.

EcoWatch

- Ver la información acerca del estudio como el número de puntos, número de serie del instrumento, etc. que ha sido almacenado en el 556 con los datos.
- Imprima los informes de datos en formatos estadísticos diferentes.
- Crear puntos de parámetros vs parámetros en vez de parámetros vs. tiempo.

Estas características adicionales del EcoWatch para Windows se explican en detalle en el manual de la serie 6 de YSI (que puede ser bajado gratuitamente de la página web de YSI según lo descrito anteriormente) y la opción de ayuda en la barra de menú del EcoWatch. Para comprar una copia impresa del manual de la serie 6, contacte el Servicio al Cliente de YSI usando la información de contacto en el *Apéndice E: Servicio al Cliente*.

21. Apéndice H Información Almacenada sobre Calibraciones

Cuando los sensores del YSI 556 MPS están inicialmente calibrados, información relevante acerca de los sensores se almacenara en un archivo independiente en la memoria del YSI 556 MPS.

NOTA: Este archivo, por defecto, tendrá el nombre "556 numero base de serie del circuito.glp" Este número es asignado en la fábrica y tiene un formato hexadecimal como 000080A4.glp. Refiérase a la Sección *10.7 Nombre de archivo GLP* para cambiar el nombre al archivo.

La información en la memoria de calibraciones seguirá la actuación del sensor de su instrumento y será particularmente útil para programas operando bajo el protocolo de Good Laboratory Practices (GLP).

21.1 Ver un archivo de Calibración almacenado (.glp)

NOTA: Asegúrese de que ha llevado a cabo una calibración en al menos en uno de los sensores asociados con su YSI 556 MPS.

1. Siga las instrucciones de la sección 8.3 Ver archivo.

21.2 Transferencia del archivo de Calibración almacenado (.glp)

NOTA: Asegúrese de que ha llevado a cabo un calibrado de al menos uno de los sensores asociados con su YSI 556 MPS.

1. Siga las instrucciones de la sección 8.4 Transferir a PC.

21.3 Significado del Archivo de Calibración (.glp)

- **1.** Abra un archivo de calibración. Refiérase a la sección *8.3 Ver archivo*.
- **2.** Use las flechas para deslizarse horizontalmente o verticalmente para visualizar todos los datos.

Imagen 21.1 Pantalla de GLP 1

Imagen 21.2 Pantalla de GLP 2

NOTA: Cada sensor (no parámetro) está caracterizado por tener una línea (Conductividad, Oxigeno Disuelto, ORP, TDS, o Barómetro (Opcional)) o 2 líneas (pH) de documentación de calibración.

La parte a mano izquierda de cada entrada de calibración muestra la fecha y hora en la que se efectuó una calibración de un sensor en particular. Además, cada entrada de calibración está caracterizada por un número de serie de instrumento, según lo definido por YSI. Ver Imagen 21.1 Pantalla 1 de almacenado de calibración. La parte a mano derecha muestra la designación por parte de YSI de las constantes de calibración y sus valores después de que se ha efectuado una calibración. Se proporcionara una descripción más detallada a continuación. Informacion Almacenada sobre el Calibrado

- Ganancia de Conductividad Un número relativo que describe la sensibilidad del sensor. Básicamente, el valor representa la constante calculada dividida por el valor típico de la constante (5 cm⁻¹).
- Ganancia de Oxigeno Disuelto– Un numero relativo que describe la sensibilidad del sensor. Básicamente, el valor representa el sensor en el tiempo en que se realizo la calibración dividido por el valor típico del sensor (15 uA).
- **Ganancia del pH** Un numero que básicamente representa la sensibilidad del sensor pH. Para eliminar el efecto de la temperatura en la pendiente (slope) de la relación de la salida de la sonda en mv versus pH, el valor del pH/mv multiplicado por la temperatura en grados Kelvin(K)
- **Compensación de pH** Un numero que básicamente representa la compensación de la relación de la salida de la sonda en mv versus pH, el valor de pH esta multiplicado por la temperatura en grados Kelvin (K)

En el momento que usted realiza una calibración, la información relativa a las constantes de calibración se introducirán en el archivo de almacenado de calibración (archivo .glp). Sin embargo, si utiliza el comando Borrar todos los archivos, Referencia sección 8.6 *Borrado de todos los Archivos*, el archivo de almacenado. Es crucial que este archivo sea descargado en su PC antes de proceder a Borrar de todos los archivos. Refiérase a la sección 8.4 *Transferir a PC*.

YSI Environmental 1700/1725 Brannum Lane Yellow Springs, OH 45387 USA 937.767.7241 937.767.9353 fax environmental@YSI.com <u>www.YSI.com</u>

> Item # 600006 Rev C Drawing # 600006 December 2010 ©2010 YSI Incorporated

GARMIN_®

GPSMAP® 64 SERIES / GPSMAP 64X SERIES

Manual del usuario

- **Cadencia**: número de revoluciones de la biela o número de zancadas por minuto. El dispositivo debe estar conectado a un accesorio de cadencia para que aparezcan estos datos.
- **Cuentakilómetros**: cuenta total de la distancia recorrida en todas las rutas. El total no se suprime al restablecer los datos de la ruta.
- **Cuentakilómetros de ruta**: cuenta total de la distancia recorrida desde la última puesta a cero.
- **Descenso Máximo**: nivel de descenso máximo en pies o metros por minuto desde la última puesta a cero.
- **Descenso Media**: distancia vertical media de descenso desde la última puesta a cero.
- **Descenso Total**: distancia de altura total descendida desde la última puesta a cero.
- **Desvío de trayecto**: distancia hacia la izquierda o la derecha por la que te has desviado respecto de la ruta original del trayecto. Debes estar desplazándote para que aparezcan estos datos.
- Distancia del track: distancia recorrida en el track actual.
- Distancia de vuelta: distancia recorrida en la vuelta actual.
- **Distancia hasta destino**: distancia restante hasta el destino final. Debes estar desplazándote para que aparezcan estos datos.
- **Distancia hasta siguiente**: distancia restante hasta el siguiente punto intermedio de la ruta. Debes estar desplazándote para que aparezcan estos datos.
- **Distancia vertical a destino**: distancia de altura entre la posición actual y el destino final. Debes estar desplazándote para que aparezcan estos datos.
- ETA a destino: hora del día estimada a la que llegarás al destino final (ajustada a la hora local del destino). Debes estar desplazándote para que aparezcan estos datos.
- **ETA a siguiente**: hora del día estimada a la que llegarás al siguiente punto intermedio de la ruta (ajustada a la hora local del punto intermedio). Debes estar desplazándote para que aparezcan estos datos.
- Factor de planeo: factor de distancia horizontal recorrida hasta el cambio en la distancia vertical.
- Factor de planeo a destino: factor de planeo necesario para descender desde la posición actual hasta la altura del destino. Debes estar desplazándote para que aparezcan estos datos.
- Fecha: día, mes y año actual.
- Frecuencia cardiaca: frecuencia cardiaca en pulsaciones por minuto (ppm). El dispositivo debe estar conectado a un monitor de frecuencia cardiaca compatible.
- **Giro**: ángulo de diferencia (en grados) entre el rumbo hacia tu destino y el trayecto actual. L significa girar a la izquierda. R significa girar a la derecha. Debes estar desplazándote para que aparezcan estos datos.
- **Hora del día**: hora actual del día según tu ubicación actual y la configuración de la hora (formato, huso horario y horario de verano).
- Intensidad de la señal GPS: intensidad de la señal del satélite GPS.
- Límite de velocidad: límite de velocidad indicado para carretera. No disponible en todos los mapas ni en todas las áreas. Sigue siempre las señales de circulación de los límites de velocidad vigentes de la carretera.
- Media de vueltas: tiempo medio por vuelta durante la actividad actual.

Nivel de la batería: carga restante de la batería.

Pendiente: cálculo de subida (altura) durante la carrera (distancia). Por ejemplo, si por cada 3 m (10 ft) que subes, recorres 60 m (200 pies), la pendiente es del 5 %. Precisión de GPS: margen de error de la ubicación exacta. Por ejemplo, tu ubicación GPS tiene una precisión de 3,65 m (+/-12 ft).

Presión atmosférica: presión atmosférica actual sin calibrar.

- **Profundidad**: profundidad del agua. El dispositivo debe estar conectado a un dispositivo NMEA[®] 0183 o NMEA 2000[®] que pueda detectar la profundidad del agua.
- **Puntero**: una flecha indica la dirección del siguiente punto intermedio o giro. Debes estar desplazándote para que aparezcan estos datos.
- Punto intermedio en destino: último punto de la ruta al destino. Debes estar desplazándote para que aparezcan estos datos.
- **Punto intermedio en siguiente**: siguiente punto de la ruta. Debes estar desplazándote para que aparezcan estos datos.
- Rumbo: dirección hacia un destino desde tu ubicación actual. Debes estar desplazándote para que aparezcan estos datos.
- Rumbo: dirección en la que te desplazas.
- Rumbo de brújula: dirección en la que te desplazas según la brújula.
- **Rumbo del GPS**: la dirección en la que te desplazas según el GPS.
- **Temperatura**: temperatura del aire. Tu temperatura corporal afecta a la temperatura del sensor. El dispositivo debe estar conectado a un sensor de temperatura inalámbrico para que aparezcan estos datos.
- **Temperatura Agua**: temperatura del agua. El dispositivo debe estar conectado a un dispositivo NMEA 0183 que pueda detectar la temperatura del agua.
- Temperatura máxima en las últimas 24 horas: temperatura máxima registrada en las últimas 24 horas. El dispositivo debe estar conectado a un sensor de temperatura inalámbrico para que aparezcan estos datos.
- **Temperatura mínima en las últimas 24 horas**: temperatura mínima registrada en las últimas 24 horas. El dispositivo debe estar conectado a un sensor de temperatura inalámbrico para que aparezcan estos datos.
- Temporizador de la alarma: tiempo actual del temporizador de cuenta atrás.
- Temporizador del cronómetro: tiempo de cronómetro de la actividad actual.
- **Tiempo de ruta**: cuenta total del tiempo total empleado mientras te desplazas y mientras estás detenido desde la última puesta a cero.
- Tiempo de ruta Detenido: cuenta total del tiempo empleado mientras estás detenido desde la última puesta a cero.
- Tiempo de ruta En movimiento: cuenta total del tiempo empleado mientras te desplazas desde la última puesta a cero.
- Tiempo de última vuelta: tiempo de cronómetro de la última vuelta completa.
- **Tiempo hasta destino**: tiempo restante estimado para llegar al destino. Debes estar desplazándote para que aparezcan estos datos.
- **Tiempo hasta siguiente**: tiempo restante estimado para llegar al siguiente punto intermedio de la ruta. Debes estar desplazándote para que aparezcan estos datos.
- **Total de vueltas**: tiempo de cronómetro de todas las vueltas completadas.
- **Trayecto**: dirección hacia un destino desde la ubicación de inicio. El trayecto puede visualizarse como ruta planificada o establecida. Debes estar desplazándote para que aparezcan estos datos.

<u>Geotech</u> 2650 E. 40th Ave. • Denver, CO 80205

For Sales & Service Contact

Phone 303-320-4764 • Fax 303-322-7242 1-800-833-7958

www.geotechenv.com

2020t/i

ZIRAT WARMAN

Œ

Turbidity Meter Medidor de turbidez Turbidimètre

Code/ Código 1974-T/1974-I

CONTENTS

GENERAL INFORMATION

 Packaging and Delivery 	4
General Precautions	4
Safety Precautions	4
Limits of Liability	4
Specifications	4
Statistical & Technical Definitions	6
Contents and Accessories	7
EPA Compliance	8
ISO Compliance	8
CE Compliance	8
IP67 Compliance	8
Warranty	8
Register Your Meter	8
COMPUTER CONNECTION	
Output	8
Computer Connection	9
BATTERY/AC OPERATION	9
TURBIDITY	
 What is Turbidity? 	10
How is Turbidity Measured?	10
Turbidity Units	11
Taking Turbidity Water Samples	12
Sample Dilution Techniques	13
OPTIONS & SETUP	
Factory Default Settings	13
 Turbidity Options 	
Selecting a Turbidity Calibration Curve	14
Selecting Turbidity Units	16
Averaging	18
Setting Clock	19
Setting Power Save	21
Setting Backlight Time	22
Selecting Language	24
PC Link	25
DATA LOGGING	25

CALIBRATION & ANALYSIS

Calibration	27
Turbidity Standards	
Tubes	
Turbidity Calibration Procedure	27
 Analysis without Blanking Procedure 	32
 Analysis with Blanking Procedure 	
Dilution Procedure	
 Preparation of Turbidity-Free Water 	
Testing Tips	
 Troubleshooting 	20
 Strav Light 	20 20
GENERAL UPERALING INFORMATION	
Overview	
 The Keypad 	40
 The Display and Menus 	40
Negative Results	
Tubes and Chambers	
MAINTENANCE	
Cleaning	
• Repairs	
Meter Disposal	

Refer to the **Quick Start Guide** for simplified Calibration and Analysis procedures. Refer to the **Testing Guide** for detailed Calibration and Analysis procedures for improving the accuracy of low range turbidity measurements. Refer to the **Quick Start Guide** for simplified Calibration and Analysis procedures.

Refer to the **Testing Guide** for detailed Calibration and Analysis procedures for improving the accuracy of low range turbidity measurements.

GENERAL INFORMATION

PACKAGING AND DELIVERY

Experienced packaging personnel at LaMotte Company assure adequate protection against normal hazards encountered in transportation of shipments.

After the product leaves LaMotte Company, all responsibility for safe delivery is assured by the transportation company. Damage claims must be filed immediately with the transportation company to receive compensation for damaged goods.

GENERAL PRECAUTIONS

READ THE INSTRUCTION MANUAL BEFORE ATTEMPTING TO SET UP OR OPERATE THE METER. Failure to do so could result in personal injury or damage to the meter. The meter should not be used or stored in a wet or corrosive environment. Care should be taken to prevent water from wet tubes from entering the meter chamber.

NEVER PUT WET TUBES IN THE METER.

SAFETY PRECAUTIONS

*WARNING: Reagents marked with an * are considered to be potential health hazards. To view or print a Safety Data Sheet (SDS) for these reagents go to www.lamotte.com.

Search for the four digit reagent code number listed on the reagent label, in the contents list or in the test procedures. Omit any letter that follows or precedes the four digit code number.

For example, if the code is 4450WT-H, search 4450. To obtain a printed copy, contact LaMotte by email, phone or fax.

Emergency information for all LaMotte reagents is available from Chem-Tel: (US, 1-800-255-3924) [International, call collect, 813-248-0585].

Ensure that the protection provided by this equipment is not impaired. Do not install or use this equipment in a manner that is not indicated in this manual.

LIMITS OF LIABILITY

Under no circumstances shall LaMotte Company be liable for loss of life, property, profits, or other damages incurred through the use or misuse of their products.

Mode	Nephelometric	Ratiometric	Attenuation
Unit of Measure 2020t	NTU, ASBC, EBC	NTU, NTRU, ASBC, EBC	NTU, AU, ASBC, EBC
Unit of Measure 2020i	NTU, FNU, ASBC, EBC	NTU, FNRU, ASBC, EBC	NTU, FAU, ASBC, EBC
Range	0-100 NTU/FNU 0-1,750 ASBC 0-25 EBC	0-1,000 NTRU/FNRU 0-17,500 ASBC 0-250 EBC	0-2,000 AU/FAU 0-70,000 ASBC 0-1,000 EBC

SPECIFICATIONS - 2020t/i

Resolution	0-10.99 NTU/FNU: 0.01 NTU/FNU, 11.0-100.0 NTU/FNU: 0.1 NTU/FNU NTU/FNU NTU/FNU NTU/FNU NTU/FNU NTU/FNU NTU/FNU NTU/FNU NTU/FNRU: 0.1 NTRU/FNRU: 1 NTRU/FNRU: 1 NTRU/FN		0-2000 AU/FAU: 1 AU/FAU	
Accuracy	0-2.5 NTU/FNU: ±0.05 NTU/FNU, 2.5-100 NTU/FNU: ±2%	0-2000 AU/FAU: ±10 AU/FAU or 6% whichever is greater		
Detection Limit	0.05 NTU/FNU 0.05 NTRU/FNRU 10 AU/FAU			
Reproducibility	0.02 NTU/FNU or 1%	0.02 NTRU/FNRU or 1%	1%	
Range Selection	Automatic			
Light Source	2020t: Tungsten lamp 230 spectral bandwidth 50 nm	0 °K ±50 °K, 2020i: IR LED 860) nm ±10 nm,	
Detector	2020t: Photodiode, centere 2020i: Photodiode, centere	ed at 90° and 180°, maximum ed at 90° and 180°	peak 400-600 nm	
Response Time:	<2 seconds			
Signal Averaging:	Yes			
Sample Chamber:	Accepts 25 mm flat-bottomed test tubes			
Sample:	10 mL in capped tube			
Display:	Graphic Liquid Crystal Display with Backlight			
Software:	Auto Shut-off: 5, 10, 30 min, disabled Calibration: Field adjustable, blank and 1 point Data Logging: 500 points			
Languages:	English, Spanish, French, Portuguese, Italian, Chinese, Japanese (Kana)			
Temperature:	Operation: 0–50 °C; Storage: -40–60 °C			
Operation Humidity Range:	0–90 % RH, non-condensing			
Auto Shut-off:	5, 10, 30 min, disabled			
Power Source:	USB wall adapter, USB computer connection or Lithium ion rechargeable battery			
Battery:	Charge Life: Approximately 380 tests with backlight on to 1000 tests with backlight off. (Signal averaging disabled). Battery Life: Approximately 500 charges.			
Electrical Ratings:	Rated voltage (5V), Rated port	power of input current (1.0A) a	at mini-USB input	
Data Logger:	500 test results stored			
Waterproof:	IP67 with USB port plug in	place.		
Dimensions:	[W x L x H] 8.84 x 19.05 x 6.35 cm; 3.5 x 7.5 x 2.2 inches			

Certifications:	CE Mark	Safety:	Low Voltage Directive (2006/95/EC) IEC 61010-1:2001, EN 601010-1:2001, 2nd edition
	EU	EMC:	EMC Directive (2004/108/EC) EN 61326-1:2006, EN 61000-4-2:1995 including A1:1998 and A2:2001, EN 61000-4-3:2002, EN 61000-4-4:2004, EN 61000-4-5:1995 including A1:2001, EN 61000-4-6:1996 and A1:2001, EN 61000-4-11:2004, EN 55011:2007, IEC 61000-3-2:2005, EN 61000-3-2:2006, IEC 61000-3-3:1994, EN 61000-3-3:1995 including A1:2001 and A2:2005
	US	EMC	CFR 47, Part 15 Subpart B:2007
	CAN	EMC	ICES-003, Issue 4, February 2004
	AU/NZ	EMC	AU/NZ: CISPR 11:2004
Weight:	362 g, 13 c	oz (meter only)	
USB Interface:	mini B		

STATISTICAL & TECHNICAL DEFINITIONS RELATED TO PRODUCT SPECIFICATIONS

Method Detection Limit (MDL): "The method detection limit (MDL) is defined as the minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix containing the analyte."¹ Note that, "As Dr. William Horwitz once stated, 'In almost all cases when dealing with a limit of detection or limit of determination, the primary purpose of determining that limit is to stay away from it."²

Accuracy: Accuracy is the nearness of a measurement to the accepted or true value.³ The accuracy can be expressed as a range, about the true value, in which a measurement occurs (i.e. ± 0.5 ppm). It can also be expressed as the % recovery of a known amount of analyte in a determination of the analyte (i.e. 103.5 %).

Resolution: Resolution is the smallest discernible difference between any two measurements that can be made.⁴ For meters this is usually how many decimal places are displayed. [i.e. 0.01]. Note that the resolution many change with concentration or range. In some cases the resolution may be less than the smallest interval, if it is possible to make a reading that falls between calibration marks. A word of caution, that resolution has very little relationship to accuracy or precision. The resolution will always be less than the accuracy or precision but it is not a statistical measure of how well a method of analysis works. The resolution can be very, very good and the accuracy and precision can be very bad! This is not a useful measure of the performance of a test method.

Repeatability: Repeatability is the within-run precision.⁵ A run is a single data set, from set up to clean up. Generally, one run occurs on one day. However, for meter calibrations, a single calibration is considered a single run or data set, even though it may take 2 or 3 days.

Reproducibility: Reproducibility is the between-run precision.6

Detection Limit (DL): The detection limit (DL) for the 2020t/i is defined as the minimum value or concentration that can be determined by the meter, which is greater than zero, independent of matrix, glassware, and other sample handling sources of error. It is the detection limit for the optical system of the meter.

Anexo G

(Reportes de laboratorio)

INFORME DE ENSAYO: 11592/2011

Código de Laboratorio	354952				
Parámetros	Estándar de control	% R	Unidad	LA. Exactitud (% R)	Fecha de Análisis
Solidos Totales Disueltos	1000	101,0	%	85 - 115	07/10/2011
Código de Laboratorio	354954				
Parámetros	Estándar de	% R	Unidad	LA. Exactitud	Fecha de Análisis
Solidos Totales Disueltos	tontrol	09.6	04	(% R)	
Solidos Totales Disuellos	1000	90,0	70	85 - 115	07/10/2011

Informe de Controles de Calidad: 22759/2011

Código de Laboratorio	355194	
Laboratorio		

Parámetros	Resultado	Unidad	Fecha de Análisis
Alcalinidad Total	<0,7	mg CaCO3/L	07/10/2011

Estándar de Alcalinidad Total (Agua) 1 - Rango Bajo		
Código de Laboratorio	355195	

Parámetros	Estándar de control	% R	Unidad	LA. Exactitud (% R)	Fecha de Análisis
Alcalinidad Total	10,0	96,0	%	85 - 115	07/10/2011

	Estándar de Alcalinidad Total (Agua) 1 - Rango Alto	
--	---	--

Código de Laboratorio 355196

Parámetros	Estándar de control	% R	Unidad	LA. Exactitud (% R)	Fecha de Análisis
Alcalinidad Total	100,0	95,0	%	85 - 115	07/10/2011

Page 32 de 32

 "EPA"
 : U.S. Environmental Protection Agency
 "SM"
 : "Standard Methods for the Examination of Water and Wastewater 21th. Ed. 2005"

 "ASTM"
 : American Society for Testing and Materials
 "IRAM"
 : Instituto Argentino de Normalización y Certificación

 El presente Informe es sólo válido para el Lote muestras de la referencia.
 El lote de muestras que incluye el presente informe será descartado a los 30 días calendarios de haber ingresado la muestra al laboratorio.

 El presente documento es redactado integramente en Corplab, su alteración o uso indebido constituye delito contra la fe pública y se regula por las disposiciones civiles y penales de la materia, queda prohibida la reproducción parcial del presente informe, salvo autorización escrita de Corplab Perú S.A.C.

Cl. Russel 193 - Surquillo (Alt. Cdra. 40 Av. Aviación) Lima 34 - Perú Tel.Fax: (511) 204-2000

e-mail : peru@corplab.net web : www.corplab.net

Revisión: 04 Fecha de Revisión: 03/11/08

Reporte Excel de Protocolo 11592/2011 El presente reporte no es un documento oficial

			Código de Laboratorio	113266/2011.1 - 0	113268/2011.1 - 0	113269/2011.1 - 0	113270/2011.1 - 0
			Fecha y Hora de	28-sep-11	28-sep-11	28-sep-11	28-sep-11
			Muestreo	09:25	10:20	11:04	09:25
			Muestreo	280911-M10C	280911-M11C	280911-M12	280911-P12
			Tipo de Muestra	PER - Agua Subterránea	PER - Agua Subterránea	PER - Agua Subterránea	PER - Agua Subterránea
Métodos	Detección	Limite de Cuantificación	Unidad	Resultado	Resultado	Resultado	Resultado
Parámetros Físicoquímico					and the second second	and the second	
Aceites y Grasas	1,0	4,0	mg aceites y grasas/L	<1,0	<1,0	<1,0	<1,0
Alcalinidad Total	0,7	1,4	mg CaCO3/L	<0,7	<0.7	<0.7	<0.7
Bicarbonatos	1,0	2,2	mg HCO3-/L	<1,0	<1.0	<1.0	<10
Carbonato	0,2	0,5	mg CO3-2/L	<0,2	<0,2	<0,2	<0.2
Cianuro Wad	0,001	0,002	mg CN ⁻ /L	<0,001	<0,001	<0,001	<0.001
Conductividad	1,7		uS/cm	123,80	<1,7	<1,7	157,70
Duraza Tatal	2	4	mg O2/L	<2	<2	<2	<2
Nitrógeno Amonicael	0,67	3,35	mg CaCO3/L	12,40	<0,67	<0,67	12,20
nili ogeno Amoniacai	0,004	0,040	mg NH3-N/L	0,038	<0,004	<0,004	0,040
pn			Unid. pH	4,29	6,02	6,23	3,84
Solidos Totales Disueltos	2	5	mg Sólidos Totales Disueltos/L	42	<2	<2	42
Solidos Totales Suspendidos	2	5	mg Sólidos Totales Suspendidos/L	12	<2	<2	16
Sulfuros	0,001	0,008	mg S-2/L	<0,001	<0.001	<0.001	<0.001
Aniones por Cromatografia Iónica							-0,001
Bromuro, Br-	0,001	0,003	mg/L	<0,001	<0,001	<0.001	<0.001
Cloruros, Cl-	0,020	0,060	mg/L	0,105	0,090	<0.020	0.065
Fluoruros, F-	0,002	0,005	mg/L	0,123	<0,002	<0,002	0.119
Postatos (como P)	0,020	0,070	mg/L	<0,020	<0,020	<0,020	<0.020
Nitratos, (como N)	0,003	0,008	mg/L	0,007	0,006	<0,003	0.011
Nitritos, (como N)	0,001	0,003	mg/L	<0,001	<0,001	<0,001	< 0.001
Metales Totales per ICD MC	0,015	0,040	mg/L	33,60	0,310	<0,015	33,58
Aluminio (Al)	0.004	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997					
Antimonio (Al)	0,001	(mm	mg/L	3,214	<0,001	<0,001	3,175
Arsénico (As)	0,0001		mg/L	<0,0001	<0,0001	<0,0001	<0,0001
Bario (Ba)	0,0003		mg/L	0,0099	<0,0003	<0,0003	0,0111
Berilio (Be)	0,0001		mg/L	0,0217	<0,0001	<0,0001	0,0209
Bismuto (Bi)	0,00004		mg/L	<0,00004	<0,00004	<0,00004	<0,00004
Boro (B)	0,0007		mg/L	<0,00001	<0,00001	<0,00001	<0,00001
Cadmio (Cd)	0,00003		mg/L	<0,0007	<0,0007	<0,0007	<0,0007
Calcio (Ca)	0.02		mg/L	<0,00003	<0,00003	<0,00003	<0,00003
Cobalto (Co)	0.00004		mail	0.00500	<0,02	<0,02	1,19
Cobre (Cu)	0.0003		mail	<0.00009	<0,0004	<0,00004	0,00499
Cromo (Cr)	0.0001		mal	0,0003	<0,0003	<0,0003	<0,0003
Estaño (Sn)	0,0001		mg/L	0.0082	<0,0001	<0,0001	0,0038
Estroncio (Sr)	0,0001		ma/l	0,0090	<0,0001	<0,0001	<0,0001
Fosforo (P)	0,004		mo/L	0 168	<0.004	<0,0001	0,0100
Hierro (Fe)	0,001		ma/L	7 190	<0.004	<0,004	0,208
Litio (Li)	0,001		mg/L	<0.001	<0.001	<0,001	7,683
Magnesio (Mg)	0,004		mg/L	1.843	<0.004	<0.001	1,696
Manganeso (Mn)	0,0002		mg/L	0.0218	<0.0002	<0,004	0,000
Mercurio (Hg)	0,0001		mg/L	< 0.0001	<0.0001	<0,0002	<0.0001
Molibdeno (Mo)	0,0001		mg/L	<0,0001	<0.0001	<0.0001	<0,0001
Niquel (Ni)	0,0002		mg/L	0,0075	<0.0002	<0.0002	0.0083
Plata (Ag)	0,00001		mg/L	<0,00001	< 0.00001	<0.00001	<0.00001
Plomo (Pb)	0,0001		mg/L	0,0067	<0,0001	<0.0001	0.0102
Potasio (K)	0,008		mg/L	2,786	<0,008	<0.008	2 754
Selenio (Se)	0,00005		mg/L	<0,00005	<0,00005	<0.00005	<0.00005
Sincio (SI)	0,02		mg/L	8,54	<0,02	<0,02	8.24
Talla (TI)	0,09		mg/L	<0,09	<0,09	<0,09	<0.09
Titonio (TI)	0,0001		mg/L	<0,0001	<0,0001	<0,0001	<0.0001
	0,001		mg/L	<0,001	<0,001	<0,001	0.003
Vanadia 00	0,00001		mg/L	<0,00001	<0,00001	<0,00001	<0.00001
	0,0001		mg/L	0,0130	<0,0001	<0,0001	0,0134
200 (20)	0,003		mg/L	0,212	<0,003	<0,003	0,324

Cl. Russel 193 - Surquillo (Alt. Cdra. 40 Av. Aviación) Lima 34 - Perú Tel.Fax: (511) 204-2000 E-mail: peru@corplab.net web: www.corplab.net

Reporte Excel de Protocolo 11592/2011 El presente reporte no es un documento oficial

			Código de Laboratorio	113266/2011.1 - 0	113268/2011.1 - 0	113269/2011.1 - 0	113270/2011.1 - 0
			Fecha y Hora de	28-sep-11	28-sep-11	28-sep-11	28-sep-11
			Muestreo	09:25	10:20	11:04	09:25
			Estación de Muestreo	280911-M10C	280911-M11C	280911-M12	280911-P12
			Tipo de Muestra	PER - Agua	PER - Agua	PER - Agua	PER - Agua
Métodos	Límite de Detección	Límite de Cuantificación	Unidad	Resultado	Resultado	Resultado	Resultado
Parámetros Fisicoquímico			and the second second				
Metales Disueltos por ICP-MS							
Aluminio Disuelto (Al)	0,001		mg/L	3,214	<0.001	<0.001	3.042
Antimonio Disuelto (Sb)	0,0001		ma/L	<0.0001	<0.0001	<0.0001	<0.0001
Arsenico Disuelto (As)	0,0003		mo/L	<0.0003	<0.0003	<0,0001	<0,0001
Bario Disuelto (Ba)	0,0001		mg/L	0.0211	<0.0001	<0,0003	0,0003
Berilio Disuelto (Be)	0,00004		ma/L	<0.00004	<0.00004	<0,0001	<0,0209
Bismuto Disuelto (Bi)	0,00001		mg/L	<0.00001	<0,00004	<0,00004	<0,00004
Boro Disuelto (B)	0.0007		ma/l	<0.0007	<0.0007	<0,0007	<0,00001
Cadmio Disuelto (Cd)	0,00003		mail	<0.00003	<0,0007	<0,0007	<0,0007
Calcio Disuelto (Ca)	0.02		mg/L	0.69	<0.00	<0,00003	<0,00003
Cobalto Disuelto (Co)	0.00004		mg/L	0.00478	<0,02	<0,02	0,82
Cobre Disuelto (Cu)	0.0003		mg/L	<0.0003	<0,0004	<0,0004	0,00495
Cromo Disuelto (Cr)	0.0001		mail	<0,0000	<0,0003	<0,0003	<0,0003
Estaño Disuelto (Sn)	0.0001		mal	<0.0001	<0,0001	<0,0001	<0,0001
Estroncio Disuelto (Sr)	0.0001		mg/L	0.0083	<0,0001	<0,0001	<0,0001
Fosforo Disuelto (P)	0.004		mail	0,0000	<0.0001	<0,0001	0,0087
Hierro Disuelto (Fe)	0.001		mail	0,025	<0,004	<0,004	<0,004
Litio Disuelto (Li)	0.001	***	mail	<0.001	<0.001	<0,001	0,143
Magnesio Disuelto (Mg)	0.004		mg/L	1.843	<0,001	<0,001	<0,001
Manganeso Disuelto (Mn)	0.0002		mg/L	0.0200	<0,004	<0,004	1,686
Mercurio Disuelto (Hg)	0.0001		mall	<0.0001	<0,0002	<0,0002	0,0221
Molibdeno Disuelto (Mo)	0.0001		mol	<0,0001	<0,0001	<0,0001	<0,0001
Niguel Disuelto (Ni)	0.0002		mail	0,0001	<0,0001	<0,0001	<0,0001
Plata Disuelta (Ag)	0.00001		mail	<0.00001	<0,0002	<0,0002	0,0073
Plomo Disuelto (Pb)	0,0001		mg/L	0,00001	<0,0001	<0,00001	<0,00001
Potasio Disuelto (K)	0.008		mg/L	2,624	<0,0001	<0,0001	0,0055
Selenio Disuelto (Se)	0.00005		mg/L	<0.00005	<0,008	<0,008	2,623
Silicio Disuelto (Si)	0.02		mg/L	7.25	<0,0005	<0,00005	<0,00005
Sodio Disuelto (Na)	0.09		mg/L	/,35	<0,02	<0,02	7,27
Talio Disuelto (TI)	0.0001		mg/L	<0,09	<0,09	<0,09	<0,09
Titanio Disuelto (Ti)	0.001		mg/L	<0,0001	<0,0001	<0,0001	<0,0001
Uranio Disuelto (U)	0.00001	2.52	mg/L	<0,001	<0,001	<0,001	<0,001
Vanadio Disuelto (V)	0.0001		mg/L	0,0001	<0,00001	<0,00001	<0,00001
Zinc Disuelto (Zn)	0.003		mg/L	0,000	<0,0001	<0,0001	0,0007
	0,003		mg/L	0,061	<0,003	< 0.003	0.063

	Grupo		11592						
Código			330486	330487	330488	330489			
A STATE OF THE REAL PROPERTY O	Nº de Muestr		113266/2011.1 - 0	113268/2011.1 - 0	113269/2011.1 - 0	113270/2011.1 - 0			
P. (Estación	11000	280911-M10C	280911-M11C	280911-M12	280911-P12			
Parametros	Factor	lón				and the second second			
Alcalinidad Total	0,020	A	<0,7	<0,7	<0,7	<0,7			
CN	0,038	A	<0,001	<0,001	<0,001	<0,001			
8-	0,062	A	<0,001	<0,001	<0,001	<0,001			
	0,028	A	0,105	0,090	<0,020	0.065			
F	0,052	A	0,123	<0,002	<0,002	0.119			
PO₄°-P	0,032	A	<0,020	<0,020	<0,020	<0.020			
NO ₃ -N	0,071	Α	0,007	0,006	<0,003	0.011			
NO ₂ -N	0,071	Α	<0,001	<0,001	<0,001	<0.001			
SO4**	0,020	A	33,60	0,310	<0.015	33.58			
SCN	0,017	A				00,00			
H3SiO4	0,011	A							
рН			4,29	6.02	6.23	3.84			
Aluminio Disuelto (Al)	0,111	C	3,214	< 0.001	<0.001	3.042			
Antimonio Disuelto (Sb)	0,025	С	<0,0001	<0.0001	<0.0001	<0.0001			
Arsenico Disuelto (As)	0,040	С	<0,0003	< 0.0003	<0.0003	<0,0001			
Bario Disuelto (Ba)	0,014	C	0.0211	<0.0001	<0,0003	<0,0003			
Berilio Disuelto (Be)	0,222	С	< 0.00004	<0.00004	<0,0001	0,0209			
Bismuto Disuelto (Bi)	0,014	C	<0.00001	<0.00004	<0,0004	<0,00004			
Boro Disuelto (B)	0,277	C	<0.0007	<0.0007	<0,0001	<0,00001			
Cadmio Disuelto (Cd)	0.018	C	<0.00003	<0,0007	<0,0007	<0,0007			
Calcio Disuelto (Ca)	0.049	C	0.69	<0.00	<0,00003	<0,00003			
Cobalto Disuelto (Co)	0.034	C	0.00478	<0,02	<0,02	0,82			
Cobre Disuelto (Cu)	0.031	C	<0.0003	<0,0004	<0,0004	0,00495			
Cromo Disuelto (Cr)	0.057	C	<0,0003	<0,0003	<0,0003	<0,0003			
Estaño Disuelto (Sn)	0.034	C	<0,0001	<0,0001	<0,0001	<0,0001			
Estroncio Disuelto (Sr)	0.022	C	0,0001	<0,0001	<0,0001	<0,0001			
Fosforo Disuelto (P)	0 161	C	0.025	<0,0001	<0,0001	0,0087			
Hierro Disuelto (Fe)	0.053		0,025	<0,004	<0,004	<0,004			
Litio Disuelto (Li)	0.144		<0.001	<0,001	<0,001	0,143			
Magnesio Disuelto (Mg)	0.082		1 942	<0,001	<0,001	<0,001			
Manganeso Disuelto (Mn)	0.036		0,0200	<0,004	<0,004	1,686			
Mercurio Disuelto (Ha)	0,010		<0,0200	<0,0002	<0,0002	0,0221			
Molibdeno Disuelto (Mo)	0,063		<0,0001	<0,0001	<0,0001	<0,0001			
Niguel Disuelto (Ni)	0.034		0,0001	<0,0001	<0,0001	<0,0001			
Plata Disuelta (Ag)	0,009		0,0070	<0,0002	<0,0002	0,0073			
Plomo Disuelto (Ph)	0,009		<0,00001	<0,00001	<0,00001	<0,00001			
Potasio Disuelto (K)	0,005		0,0030	<0,0001	<0,0001	0,0055			
Selenio Disuelto (Se)	0,025		2,624	<0,008	<0,008	2,623			
Sodio Disuelto (Na)	0,031		<0,00005	<0,00005	<0,00005	<0,00005			
Talio Disuelto (TI)	0,043		<0,09	<0,09	<0,09	<0,09			
Titanio Disuelto (Ti)	0,005		<0,0001	<0,0001	<0,0001	<0,0001			
	0,083		<0,001	<0,001	<0,001	<0,001			
Vanadio Disuelto (0)	0,025	C	<0,00001	<0,00001	<0,00001	<0,00001			
Zine Disuelte (Zn)	0,098	C	0,0008	<0,0001	<0,0001	0,0007			
	0,03	C	0,061	<0,003	<0,003	0,063			
Aniones			0.68	0.04	0.02				
Cationes		-	0,00	0,01	0,00	0,68			
Cationes - 5 Aniones			-0.01	0,00	0,00	0,74			
Cationes + 5 Aniones	ALL	Contractor of	1 36	-0,01	0,00	0,06			
Balance (%)		Contra I	-0.56	-81.09	0,00	1,42			
Para ∑ Aniones 0-3	3.0 meg/L :		0100	-01,09	100,00	4,03			
Σ Aniones - Σ Cationes ((+/- 0,2 meq/L)		0,01	0,01	0,00	-0,06			

LABORATORIO DE ENSAYO ACREDITADO POR EL ORGANISMO PERUANO DE ACREDITACIÓN INDECOPI - SNA CON REGISTRO No LE 026

Pág 01 de 04

Registro Nº LE 026

INFORME DE ENSAYO

C-1668-I211-MWH-M

CLIENTE	: MWH PERU S.A Calle las palmeras N° 428 San Isidro - Lima
ATENCIÓN	: Srta. Ethel Sánchez
MÉTODOS DE ENSAYO	: Químico, Microbiológico
ITEM DE ENSAYO	: Agua Consumo, Agua Superficial
PRESENTACIÓN DE LOS ITEM DE ENSAYO	; 03 botellas plástico 1L.,04 frascos vidrio 1L.
	Preservadas
MUESTREO	: Muestras tomadas por el cliente
LUGAR Y FECHAS DE RECEPCIÓN	: Cajamarca, 22 de Septiembre de 2011 Hora: 17:55

LUGAR Y FECHAS DE EJECUCIÓN

: Cajamarca, 22 de Septiembre de 2011

MÉTODO DE ENSAYO

Parámetro	Norma-Método	Límite de detección	Tiempo maximo de conservacion
Demanda Bioquímica de Oxígeno	APHA AWWA WEF 5210 A 8 21th Ed 2005	<2.0 mg/L	48h
Oxigeno Disuelto	APHA.AWWA,WEF Parte 4500 O A,B 21th Ed. 2005	<0.07 mg/L	86
Cromo Hexavalente*	APHA-3500 A,B 21th Ed, 2005	<0.001 mg/L	24b
Coliformes Totales (A C)	APHA AWWA WEF, Cap. 9, Parte 9221 A.B.C 21th Ed. 2005	<1.1 NMP/100 mL	30b
Coliformes Termotolerantes ó Fecales (A.C)	APHA AWWA WEF Cap 9 Parte 9221 A B.C.E1 21th Ed 2005	<1.1 NMP/100 mL	30h
E coli* (AC)	APHA AWWA WEF. Cap 9 Parte 9221 A.B.C. F 21th Ed: 2005	<1.1 NMP/100 mL	30h
Coliformes Totales (A S)	APHA,AWWA,WEF, Cap. 9, Parte 9221 A,B,C 21th Ed. 2005	<1.8 NMP/100 mL	24h
Coliformes Termotolerantes ó Fecales (A S)	APHA, AWWA, WEF, Cap. 9. Parte 9221 A.B.C.E1. 21th Ed. 2005	<1.8 NMP/100 mL	24h
Bacterias-Heterotroficas*	APHA, AWWA,WEF, Cap 9, Parte 9215 A,B,C 21th Ed, 2005	<1 UFC/mL	24h
Enterococos Fecales* (A C)	APHA AWWA WEF, Cap 9 Parte 9230 B 21th Ed 2005	<1.1 NMP/100 mL	24h
Salmonella* (A C)	APHA AWWA WEF Cap 9 Parte 9260 B 21th Ed 2005	- P/A/1000 mL	30h
Vibrio Cholerae*	APHA.AWWA. WEF. Cap 9 Parte 9250 H 21th Ed 2005	- P/A/100 mL	30h
Huevos-Helmintos*	NMX-AA-113-SCFI-1999	- P/A	34
Parasitos*	APHA AWWA, WEF, Cap 9, Parte 9711 21th Ed, 2005	- P/A	30b

Sello

Fecha Emisión

Responsable Administrativo

Responsable Técnico

lucada

Pablo Moncada Novoa CBP 1378

28/09/2011

*Todos los resultados de los ensayos son considerados confindenciales.

Alexandra Aurazo Rodríguez

LOS RESULTADOS DE LOS ENSAYOS CORRESPODEN A LOS ENSAYOS SOLICITADOS PARA LOS ITEM DE ENSAYO RECIBIDOS PROHIBIDA LA REPRODUCCIÓN TOTAL O PARCIAL SIN EL PERMISO DE NKAP SRL

*Las muestras serán eliminadas al término del tiempo de almacenamiento, salvo requerimiento expreso del cliente.

C-1668-I211-MWH-M

INFORME DE ENSAYO

C-1668-I211-MWH-M

Pág. 02 de 04

Código de Laboratorio					
	C-1668-01	C-1668-02	C-1668-03		
Código de Cliente			220911- S32A	220911-S27	229011-M27
Item de Ensayo			Agua	Agua	Aqua
Fecha de Muestreo			Consumo	Consumo	Superficial
Hora de Muestreo	22/09/2011	22/09/2011	22/09/2011		
Parámetro	1		13:50	10:39	09:38
Demanda Bioquímica do Ovíc	Símbolo	Unidad			00.00
Oxígeno Disuelto	DBO	mg/L	<2.0	<2.0	<2.0
Cromo Hexavalento*	OD	mg/L	7.07	6.28	6.10
Coliformes Totales	Cr ^{6⁺}	mg/L	< 0.001	<0.001	6.18
Coliformes Termotolorantes (5	NMP/10	0 mL	1.1	11	<0.001
E. coli*	NMP/10	0 mL	<1.1	<1.1	2.0
Bacterias Hotorot	NMP/10	0 mL	<11	-1.1	<1.8
Entorease Entoreas*	UFC/r	nL	8	<1.1	NSC
Interococos Fecales*	NMP/10	1 ml	0	65	NSC
Salmonella*	P/A/100		<1.1	<1.1	NSC
/ibrio Cholerae*	P/A/1000 mL		Ausencia	Ausencia	NSC
SC: No solciitador por el cliente	F/AV100	mL	Ausencia	Ausencia	NSC

(*) Los Métodos indicados no han sido acreditados por el Indecopi-SNA.

INFORME DE ENSAYO

C-1668-I211-MWH-M

Pág. 03 de 04

Código de Laboratorio	Código de Cliente	Item de Ensavo	Fecha de Muestreo	Hora de Muestreo	PARÁSITOS	ESTRUCTURA PARASITARIA	Presencia/a usencia			
Laboratorio					PRO	TOZOARIOS				
					PHYLLUM SA					
					CLAS	E LOBOSEA				
					Entamoeba coli	Quiste	Ausencia			
					Endolimax nana	Quiste	Ausencia			
					Blastocystis hominis	Quiste	Ausencia			
					Entamoeba hystolitica	Quiste	Ausencia			
					CLASE ZO	OMASTIGOFORA				
					Giardia lamblia o	Qusite	Ausencia			
				Trichomonas homin	Trichomonas hominis	Trofozoito	Ausencia			
					PHYLLUM CILIOFORA					
							CLASE CINE	TO FRAGMINOFOR		
		5			Balantidium coli	Trofozoito/Quiste	Ausencia			
C-1668-01	C-1668-01 220911- Agua 22/09/2011 S32A Consumo 22/09/2011	1 13:50	PHYLLUM APICOMPLEXA							
					CLASE SPOROZOA					
					Criptosporidium sp	Ooquistes	Ausencia			
					HELMINTOS					
					PHYLLUM NEMATELMINTOS					
					CLASE	E NEMATODES				
					Ascaris lumbricoides	Huevo	Ausencia			
					CLAS	E PHASMIDEA				
					Strongyloides stercoralis	Larva	Ausencia			
					CLASE AN	QUILOSTOMIDEOS				
					Trichuris trichiura	Huevos	Ausencia			
1					PHYLLU	VI PLATELMINTOS				
					CLA	SE CESTODE				
					Taenia sp	Huevos	Ausencia			
					Hymenolepis nana	Huevos	Ausencia			
					CLAS	E TREMATODE				
					Fasciola hepatica	Huevos	Ausencia			

(*) Los Métodos indicados no han sido acreditados por el Indecopi-SNA.

C-1668-I211-MWH-M

INFORME DE ENSAYO

C-1668-I211-MWH-M

Pág. 04 de 04

Código de	Código de	Item de	Fecha de	Hora de										
Laboratorio	Cliente	Ensayo	Muestreo	Muestrec	PARÁSITOS	ESTRUCTURA	Presencia/a							
						PARASITARIA	usencia							
							PI	ROTOZOARIOS						
					PHYLLUM	SARCOMASTIGOFO	RA							
					CL	ASE LOBOSEA								
					Entamoeba coli	Quisto								
			1 1		Endolimax nana	Quiste	Ausencia							
			1 1		Blastocystis hominis	Quiste	Ausencia							
					Entamoeba hystolitica	Quiste	Ausencia							
			1 1		CLASE	ZOOMASTIGOEORA	Ausencia							
			1 1		Giardia lamblia o	Queito	1							
			1 1		Trichomonas hominis	Trofoneite	Ausencia							
			1 1		PHYI		Ausencia							
			1 1			LOW CILIOFORA								
				10:39	CLASE CIN	ETO FRAGMINOFOR	A							
C-1668-02	220911- S27	Agua Consumo	22/09/2011		10:39	Balantidium coli	Trofozoito/Quiste	Ausencia						
											PHYLLUM APICOMPLEXA			
					CLAS	SE SPOROZOA	A							
					Criptosporidium sp	Ooguistes	Ausencia							
	1				HELMINTOS		Ausencia							
			_		PHYLLUM	NEMATELMINTOS								
				9	CLAS	E NEMATODES								
	1		1		Ascaris lumbricoides	Huevo	Ausencia							
					CLAS	E PHASMIDEA	- Ausencia							
					Strongyloides stercoralis	Larva	Ausonaia							
				1	CLASE AN	QUILOSTOMIDEOS	Ausencia							
					Trichuris trichiura	Huevos	Ausonaia							
					PHYLLUM PLATEL MINTOS									
				[CLAS	SE CESTODE								
			1		Taenia sp	Huevos	Ausonaia							
					Hymenolepis nana	Huevos	Ausoncia							
			1		CLASE	TREMATODE	Ausencia							
l os Mátodas (Fasciola hepatica	Huevos	Aucora							
-os melodos ind	icados no han	hetiborac obia	an annal la d		A CONTRACTOR OF THE	140,003	Ausencia							

(*) Los Métodos indicados no han sido acreditados por el Indecopi-SNA.

C-1668-I211-MWH-M

Anexo H

(Formatos de campo)

		Actividad				
	Equipos	Cantidad	Agua Subterranea	Sedimentos	Wipe Sample	
	Multiparametro					
	Turbidimetro					
	Termómetro					
	Oximetro HANNA					
	GPS Garmin Rino					
	GPS Garmin Etrex					
	Draga Van Been					
	Aparato de filtración (0.45 micrones)					
<u> </u>	Sonda de nivel de aqua subterránea (200m)					
	Portafiltros de acetato de celulosa de 0.45					
	Bomba peristáltica					
	Achicador do acoro inovidable 1"					
	Camara fotografica + cargador					
	Celular (RPM)					
	Linterna					
	Cargador de Pilas AA					
	Baterías 9 voltios					
Medic	ión de Flujo					
	Cronómetro					
	Varilla de vadeo					
	Flotadores					
	Wuincha					
	Recipientes volumétricos calibrados (están en Equipo					
	de Muestreo)					
<u> </u>	Materiales					
Muest	ireo					
	Frascos					
	Frascos					
	Frascos					
	Frascos					
	Frascos					
	Balde de plástico					
	Preservantes					
	Preservantes					
	Preservantes					
	Filtros de acetato de celulosa de 0.45 um					
	Filtro de PVC descartable de 0.45 um					
	Vaso calibrador pequeño					
	Frascos para muestras (laboratorio)					
	Tubo de silicona					
	Pipeta vidrio					
	Jarra de 0.130 L de acero inovidable					
<u> </u>	Jarra de 1 L de acero inovidable					
	Recipiente 4 L de acero inovidable				<u> </u>	
	Posipionte de EL de acero inovidable					
<u> </u>						
	Daiue o ∟ ue plastico (rojo)					
<u> </u>					ļ	
	Spray rojo					
	Spray verde					
	Cucharón					
	Plancha					
	Gotero de vidrio					
	Pala					
	Balanza					
	Cartulina blanca					
	Gasa					
r		1				

			Actividad				
	Equipos	Cantidad	Agua Subterranea	Sedimentos	Wipe Sample		
Desco	ontaminación y Preservación						
	Preservantes						
	Solventes						
	Guantes latex sin talco S						
	Guantes latex sin talco M						
	Guantes latex sin talco L						
	Guantes latex sin talco XL						
	Guantes nitrilo sin talco S						
	Guantes nitrilo sin talco M						
	Guantes nitrilo sin talco L						
	Guantes nitrilo sin talco XL						
	Bolsas ziplot chicas						
	Bolsas ziploc medianas						
	Bolsas ziploc grandes						
	Bolsas Blancas						
	Bolsas negras grandes						
	Ice pack						
	Agua desionizada (destilada)						
	Dispensador de agua						
	Alconox o detergente equivalente no fosfatado						
	Dispensador de alconox						
	Papel toalla						
	Esponja para lavar						
	Paños absorventes						
	Hielo						
	Caja térmica grande						
	Caja térmica chica						
	Plástico con burbuja						
Soluc	iones Estándar y de Calibración						
	Solución de Confiabilidad						
	Solución Buffer pH 4.0 u.e						
	Solución Buffer pH 7.0 u.e						
	Solución Buffer pH 10.0 u.e						
	Solución 447 uS/cm						
	Solución 1413 uS/cm						
	<0.1/0 NTU						
	1 NTU						
	10 NTU						
	100 NTU						
Form	larios						
1 01111	libreta de campo						
	Plano de ubicación de estaciones						
	Formato de recolección de muestra						
	Formato de calibración en campo						
	Sello de seguridad						
	Bemitente						
	Etiqueta						
	Cadena de custodia						
	Plan de Monitoreo de Agua						
<u> </u>	Manuales de equipos						
Logís	tico						
	Pilas AA GPS						
	Pilas AA cámara						
	Pilas C multiparámetro						
	Pilas D linterna						
	Focos para linternas						
	Tijeras						
	Plumón grueso						

			Actividad					
Equipos		Cantidad	Agua Subterranea	Sedimentos	Wipe Sample			
	Plumones de punta de fieltro							
	Lapicero de tinta indeleble							
	Plumón indeleble grueso							
	Plumón indeleble delgado							
	Cinta de embalaje							
	Masking tape grueso							
	Cooler							
Reco	l lección de residuos							
	Recipientes para buffer							
	Bolsa negras							
Perso	nal							
	Capota (Impermeable)							
	Cuchillo de bolsillo							
	Soga							
	Traje pescador							
	Mochila							
	Bloqueador solar							
	Lentes de sol							
	Gorro							
	Chaleco MWH							
	Agua y refrigerio							

FORMATO DE CALIBRACIÓN DE EQUIPOS DE MEDICIÓN DE PARÁMETROS DE CAMPO

Proyecto:	Número de Proyecto:
Fecha: / /	Hora:
Responsable:	Firma:

EQUIPO MEDIDOR DE pH

Multiparámetro YSI 556 MPS ______ otro _____marcar equipo a calibrar)

	L	_ectura	
Buffer	pH (u.e)	Temperatura (°C)	Comentarios
4.1			
7.0			
10.1			

EQUIPO MEDIDOR DE CONDUCTIVIDAD

Multiparámetro YSI 556 MPS _____ otro_____ (marcar equipo a calibrar)

Solución de calibración	Lec	tura		
	Conductividad (uS/cm)	Temperatura (°C)	Comentarios	
1413 uS/cm				
Otro (indicar):				

EQUIPO MEDIDOR DE OXIGENO DISUELTO

Multiparámetro YSI 556 MPS ______ otro_____(marcar equipo a calibrar)

		Lectura		
(1 pie = 0.3048 m)	Salinidad (mg/l)	OD (%)	Temperatura (°C)	Comentarios

EQUIPO MEDIDOR DE TURBIDEZ

Turbidímetro HACH 2100P _____LaMotte 2020e _____otro _____(marcar equipo a calibrar)

					Lectura	
	Solución estándar NTU				Turbidez (NTU)	Comentarios
0 – 10		1000		< 0.1		
0 – 100		10		10		
0 – 1000		<0.01		20		
				100		
				800		

FORMATO DE RECOLECCIÓN DE MUESTRAS DE AGUA

Proyecto:			Número de Proyecto:			
Fecha:				Hora:		
Personal of	de Campo:			Firma:		
Descripció	n del Sitio					
Localizaci	ón del Sitio:					
Número de	e Estación:			Elevación:		
Coordena	das GPS: Norte:			Este:		
Comentar	ios / descripciones:					
Descripció	n de Campo					
Número d	e Identificación de Mu	lestra:				
				-		
Tipo de Ag	gua:			-		
Caracterís	ticas de Agua (color,	olor, aparie	ncia):			
Método de	e colección:					
ذLa mues	tra ha sido filtrada?		🗖 Sí	D No		
¿El Equipo	o de campo ha sido ca	alibrado?	🗅 Sí	D No		
¿Estación	de Control de Calidad	d?	🗖 Sí	🗖 No		
Medicione	es de campo:					
	Parámetros		Valor	Unidad de Medida	1	
	Conductividad Específi	са	Valor			
	Oxigeno Disuelto			ma/l. %		
	pH			U.E.		
	Turbidez			NTU		
	Temperatura del Agu	a		°C		
	Salinidad			ppt		
	Caudal			l/s		

Anexo I (Cotización de laboratorio)

Environmental Laboratories Peru S.A.C. Cotizacion

COT 00007135

DATOS DEL CLIENTE				
Cliente: MWH PERU S.A.				
Correo:		Ruc:	20380122317	
Telefono:	_	Fax:		
Direccion: Calle Las Palmeras Nº 42	28 Urb. El Rosario - San Isidro			
Facturar a: MWH PERU S.A.	Ruc:	20380122317		
DATOS DEL PEDIDO				
Colocacion: E-Mail	Facturacion: Factura	Moneda: Dolares		
Ingreso: 09/04/2010 15:18	Solic por: SRTA. ETHEL SANCHEZ	Sist. Venta: <u>50% adelantado y 50% c</u>		
Doc Ref:		т. с.:_	.000	
DATOS DEL PRODUCTO				
Tipo Muestra: CALIDAD DE AGUA				
Procedencia:	Se ent	regara Documento Oficial		
Referencia:				

Tiempo entrega: <u>12</u> dias

Validez: 7 dias

Registro:

DETALLE DE PARAMETROS POR MUESTRA

Tipo Muestra: AGUA

Parametros	Metodo	Cantidad	P.U.	Parcial	
Alcalinidad Total	SM 2320-B	1	8.50	8.50	
Bicarbonatos	SM 4500 CO2-D	1	11.65	11.65	
Carbonatos	SM 4500 CO2-D	1	11.65	11.65	
Clorofila	SM 1200-H	1	25.00	25.00	
Color Verdadero	EPA 110.2	1	9.50	9.50	
Cromo VI	SM 3500Cr-B	1	11.00	11.00	
Dureza Total	EPA 130.2	1	10.00	10.00	
Olor	Organoleptico	1	2.75	2.75	
Sílice Total	SM 4500SiO2-C	1	16.00	16.00	
Sólidos Totales Disueltos	EPA 160.1	1	10.60	10.60	
Sólidos Totales en Suspensión	SM 2540-D	1	10.60	10.60	
Aceites y Grasas	EPA 1664-A	1	16.40	16.40	
DBO5	EPA 405.1	1	16.40	16.40	
Detergentes Anionicos	SM 5540-C	1	23.30	23.30	
DQO (Rango medio-alto)	EPA 410.1	1	16.40	16.40	
Fenoles	SM 5530-C	1	23.30	23.30	
Cianuro Libre	A. Chemistry	1	17.00	17.00	
Cianuro Total	EPA 335.2	1	17.00	17.00	
Cianuro WAD	SM 4500CN-I	1	17.00	17.00	
Cloruros	EPA 325.3	1	10.50	10.50	
Fluoruros	EPA 340.2	1	12.00	12.00	
Fosfato Inorgánico Total	EPA 365.3	1	12.00	12.00	
Fosfatos	EPA 365.3	1	12.70	12.70	
Fósforo Total	EPA 365.3	1	12.70	12.70	
N - Nitratos	EPA 352.1	1	12.20	12.20	
N - Nitritos	EPA 354.1	1	10.60	10.60	
Nitrógeno Amoniacal	SM 4500NH3-F	1	13.30	13.30	
Nitrógeno Total*	EPA 351.3	1	19.00	19.00	

 Av. La Marina 3059, San Miguel - Lima Teléfono: (511) 616 - 5400 Fax: (511) 616 - 5418 RPM: 975564

 Soles: BCP Cuenta Corriente 192-0760885-0-05 / Dólares:
 BCP Cuenta Corriente 192-0093334-1-76 BWS 000-1270667 BBVA 151-0100018146

 E-mail: envirolab@envirolabperu.com.pe
 Pagina web: www.envirolabperu.com.pe
 RUC: 20269493519

Código: GG-1.0-19	Revisión: May-06	Formato: GG-32

COT 00007135

9-Apr-2010 15:18

Registro:

DETALLE DE PARAMETROS POR MUESTRA

Tipo Muestra:	AGUA
---------------	------

Parametros	Metodo	Cantidad	P.U.	Parcial
Sulfator	EDA 375 /	1	12 70	12 70
Sulfuros	EPA 375.7	1	12.70	12.70
Bifenilos Policlorados (PCBs)		1	12.20	12.20
BTEY	EPA 8260-B	1	105.00	105.00
Compuestos Orgánicos Volátiles (VOC's)	EPA 8260-B	1	170.00	170.00
Hidrocarburos Aromaticos Polinucleares (PAH's)		1	120.00	120.00
Hidrocarburos Totales de Petróleo. (C10 – C40)		1	120.00	100.00
Posticidas Organoslorados		1	100.00	125.00
Posticidas Organofosforados		1	125.00	125.00
Tribalomotanos		1	125.00 E8.00	E8 00
Colifermer Facelos (N)*	EPA 8200-B	1	58.00	56.00
Colliformes Tetales (N)*	SM 9221-E.1	1	16.00	16.00
	SM 9221-B	1	10.00	10.00
	SM 9221F	1	18.00	18.00
Estreptococos recales*	SM	1	19.00	19.00
Heterotrotos (R)*	SM 9215-B	1	17.00	17.00
	SM 9/11-C	1	23.00	23.00
Salmonella (D)*	AOAC 992.11	1	40.50	40.50
Vibrio Cholerae*		1	40.50	40.50
Corrida Met. Totales				
MT:Ag, As, Al, B, Ba, Be, Bi, Ca, Cd, Cr, Cu, Co, Fe, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Se, Sn, Sr, Ti, Tl, V, Zn	EPA 200.7	1	85.00	85.00
Metales Totales				
Mercurio Total	EPA 1631	1	16.00	16.00
Metales Disueltos				
Mercurio Disuelto	EPA 1631	1	16.00	16.00
Corrida Met. Disueltos				
MD:Ag, As, Al, B, Ba, Be, Bi, Ca, Cd, Cr, Cu, Co, Fe, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Se, Sn, Sr, Ti, Tl, V, Zn	EPA 200.7	1	90.00	90.00
		V. Venta:		1,733.95
		IGV	US\$	329.45
		SubTotal	US\$	2,063.40
				,

por Cliente

Por Envirolab EPATRICIO

A su solicitud el Laboratorio le proporcionará los envases y preservantes necesarios sin costo alguno, los cuales deberan recogerlos en nuestras instalaciones.

Se adjunta, Instrucciones generales de Muestreo y Preservación de Muestra.

Observaciones:

- 1 * Anàlisis por subcontrata.
- 2 SAAM : Detergentes y Aniones.
- 3 la cotización no incluye el m uestreo.
- 4 Cliente puede pasara recojer sus coolers, frascos, preservantes, ice pack , instrucciones de muestreo.

 Av. La Marina 3059, San Miguel - Lima Teléfono: (511) 616 - 5400 Fax: (511) 616 - 5418 RPM: 975564

 Soles: BCP Cuenta Corriente 192-0760885-0-05 / Dólares:
 BCP Cuenta Corriente 192-0093334-1-76 BWS 000-1270667 BBVA 151-0100018146

 E-mail: envirolab@envirolabperu.com.pe
 Pagina web: www.envirolabperu.com.pe
 RUC: 20269493519

Código: GG-1.0-19	Revisión: May-06	Formato: GG-32
--------------------------	------------------	----------------

ENVIO DE MUESTRAS

Tabla de Requerimientos para Análisis de Agua

Determinación	Tipo de envase	Tamaño mínimo de muestra, ml	Tipo de muestra	Preservación	Tiempo de almacenamiento (tiempo máximo en que debe Ilegar la muestra a laboratorio)
Aceite y grasas (Limite	Vidrio			Adicionar HCl o H ₂ SO ₄ , pH	,
detección 0.5)	ámbar	2000	р	< 2, refrigerar	28 d
Aceite y grasas (Limite	Vidrio			Adicionar HCl o H ₂ SO ₄ , pH	
detección 1.4) EPA 1664	ámbar	1000	р	< 2, refrigerar	28 d
Acidez	Р	200	р	Refrigerar	14 d
Alcalinidad CO ₃ y HCO ₃	P, V	200	р	Refrigerar	14 d
Alcalinidad Total	P, V	200	р	Refrigerar	14 d
Amoriana		500		Analizar tan pronto sea posible o adicione H2SO4,	14 d
Amoniaco	P, V	500	р, с	pH < 2, remgerar	14 0
Bicarbonatos	Р	250	р	Refrigerar	/ d
Boro (Método Colorimétrico)	Р	250	р, с	HNO ₃ , pH < 2	6 meses
Carbonatos	Р	250	р	Refrigerar	7 d
Cianuro Libre	P, V	1000	р, с	Adicionar NaOH pH > 12, refrigerar y mantener en oscuridad.	14 d
Cianuro Total	P, V	1000	р, с	Adicionar NaOH pH > 12, refrigerar y mantener en oscuridad.	14 d
Cianuro Wad	P, V	1000	р, с	Adicionar NaOH pH > 12, refrigerar y mantener en oscuridad.	14 d
Cianuros: Total, WAD y Libre (Método Instrumental – FIA)	P,V	250	p, c	Adicionar NaOH pH > 12, refrigerar y mantener en oscuridad.	14 d
Cianato	P.V	500	p. c	pH > 12 con NaOH, refrigerar	14 d
Cloro Total residual (en campo)	PV	500	n	Analizar inmediatamente	0.25 h
Cloruro	P.V	200	D. C	Ninguno	28 d
Color (Método espectrofotométrico)	P, V	250	р, с	Refrigerar	48 h
Compuestos Orgánicos Volátiles (VOC's)	Tubos VOC's	40	р	Refrigerar 4°C ± 2°C	7 días
Conductividad	P, V	250	р, с	Refrigerar	28 d
Cromo VI (Método Colorimétrico)	P,V	500	р	Refrigerar	24 h
DBO	P, V	1000	р, с	Refrigerar, sin burbuja de aire.	48 h,
Demanda química de oxigeno	P, V	100	р, с	Analizar tan pronto sea posible o adicione H2SO4, pH < 2, refrigerar	28 d

Detergentes MBAS	Ρ, V	250	р, с	Refrigerar	48 h
Dióxido de Carbono	P, V	200	р	Analizar inmediatamente	0.25 h
DQO	Р	250		H2SO4 (cc):10 gotas/250 ml	28 días
Dureza	P, V	1000	р, с	Adicionar HNO3 o H2SO4, pH < 2	6 meses
Esteres Estalatos	Vidrio ámbar	1000		Refrigerar	7 días
Fenoles	V	1000	р, с	Refrigerar y adicionar H2SO4, pH < 2	28 d hasta extracció
Fluoruro	Р	200	р, с	Ninguno	28 d
				Para Fosfatos disueltos filtrar inmediatamente y	
Fosfatos	V	500	р	refrigerar.	48 h
Fósforo reactivo disuelto	Р	500	р	Refrigerar Agregar H2SO4, pH < $2 v$	48 h
Fósforo total	P, V	250	р, с	refrigerar Adicionar HCL o H2SO4	28 d
Hidrocarburo	V	1000	р	pH < 2, refrigerar.	28 d
Policiclicos	ámbar	1000		Refrigerar	7 días
Hierro +2	Р	500		Refrigerar	24 h
Hierro +3	Р	500		Refrigerar	24 h
Nitrógeno Amoniacal	P.V	500	D. C	Analizar tan pronto sea posible o adicione H2SO4, pH < 2. refrigerar	28 d
Nitrógeno Orgánico Total	P.V	500	D. C	Refrigerar y adicionar H2SO4 pH < 2	28 d
Mercurio	P	500	n c	Adicionar HNO3 pH < 2	28 d
Metales Totales en general, por Absorción Atómica y			p, c		20 4
Generación de Hidruros Metales Totales, por ICP	Р	1000	р, с	Adicionar HNO3, pH < 2	3 meses
OPTICO	Р	500	р, с	Adicionar HNO3, pH < 2	3 meses
Metales Totales por ICP MASA	Р	250	р, с	Adicionar HNO3, pH < 2	3 meses
por Absorción Atómica y Generación de Hidruros	Р	1000	р, с	inmediatamente y adicionar HNO3, pH < 2	3 meses
Metales Disueltos por ICP OPTICO	Р	500	р, с	Filtrar con filtro de 0.45 um inmediatamente y adicionar HNO3, pH < 2	3 meses
Metales Disueltos por ICP MASA	Р	250	D. C	Filtrar con filtro de 0.45 um inmediatamente y adicionar HNO3. pH < 2	3 meses
Nitrato	P, V	500	p. c	Analizar tan pronto sea posible, refrigerar	48 h
Nitrato + Nitrito	P, V	200	p, c	Adicionar H2SO4, pH < 2, refrigerar.	28 d
Nitrito	PV	250	nc	Analizar tan pronto sea	48 h
	V	L 200	1 0.0	posible, i telligeral.	

	.,	500		Analizar tan pronto sea	
Olor	V	500	р	posible, Refrigerar.	6 h
				H2SO4cc, pH <2, aprox.	
				20 gotas/litro de muestra	
	\ <i>\</i>	500		Refrigerar sin dejar	0.41
Oxidabilidad	V	500		burbujas de aire.	24h
Oxigeno disueito: Electrodo (En	V, Botella	300	n	Analizar inmediatamente	0.25 h
	BOD	500	P	2 ml de sol. De sulfato de	0.2311
				manganeso más 2 ml de	
				solución de azida de	
	V, Botella			sodio. La muestra se debe	
Oxigeno disuelto: Winkler	BOD	300	р	enviar sin burbuja de aire.	24 h
PCB's	VIORIO ámhar	1000		Pefrigerar	7 días
	Vidrio	1000		Reingeräl	7 0185
Pesticidas	ámbar	1000		Refrigerar	7 días
	Vidrio			<u>_</u>	
Pesticidas (EPA 8270 D)	ámbar	1000		Refrigerar	7 días
	5.1	100			
pH (En campo)	Ρ, ν	100	р	Analizar inmediatamente.	0.25 h
Potencial oxido-reduccion (En	P	100		Analizar inmediatamente	0 25 h
Sabor (sólo, se realiza para	•	100			0.2011
agua potable)	Р	1000		Refrigerar	24 h
Sílice	Р	250	p, c	Refrigerar sin congelar	28 d
Sólidos Disueltos Totales	P.V	400	p. c	Refrigerar	7 d
	,				-
Sólidos Sedimentables	Ρ, V	1000	р, с	Refrigerar	2 d
Cálidas Cuspandidas Totalas		1000		Defrigerer	7 d
	Ρ, ν	1000	p, c	Reingerar	7 u
Sólidos Totales	P.V	400	p. c	Refrigerar	7 d
	,				-
Sólidos Volátiles	Ρ, V	400	р, с	Refrigerar	7 d
Sulfato	ΡV	500	nc	Pofrigorar	28.4
	Γ, ν	500	p, c	Refrigerar adicionar 4	20 U
				gotas de Acetato de Zinc	
				ŽN por cada 100 ml,	
Sulfuro	Ρ, V	500	p, c	adicione NaOH pH > 9	7 días
				Refrigerar, adicionar 4	
				gotas de Acetato de Zinc	
				adicione NaOH pH $> 9^{\circ}$	
				además enviar 500ml de	
				muestra sin preservar solo	
	5.7			refrigerada y sin burbuja	7 1/
Sulturo de Hidrogeno	P, V	500	р, с	de aire.	/ dias
Sustancias extraibles al	PV	2500	Po	Refrigerar	28 días
	г, v	2000	г, С	nH < 2 Acido sulfúrico	20 0185
Tiocianato	P, V	500	р, с	refrigerar	14 d
	Vidrio		•		
TPH	ámbar	1000		Refrigerar	7 días
Turbidez	P, V	100	р, с	Analizar el mismo día, almacenar en oscuridad por 24 hrs., refrigerar	48 h
----------	------	-----	------	--	------
----------	------	-----	------	--	------

Tabla de Requerimientos para Análisis de Agua por Cromatografía lónica

El Laboratorio entrega y utiliza envases de primer uso con la finalidad de garantizar la preservación de las muestras.

Determinación	Tipo de envase	Tamaño mínimo de muestra, ml	Tipo de muestra	Preservación	Tiempo de almacenamiento (tiempo máximo en que debe Ilegar la muestra a Iaboratorio) Regulatorio según EPA 300.0
Sulfato , Fosfatos,Floruros, Nitrato,Cloruros,Nitritos	P,V	500	p,c	Refrigerar	2 Días
Sulfato	P,V	250	p,c	Refrigerar	28 Días
Nitrato	P,V	250	p,c	Refrigerar	2 Días
Cloruro	Ρ, V	250	p,c	Refrigerar	28 Días
Floruro	P, V	250	p,c	Refrigerar	28 Días
Fosfato	P,V	250	p,c	Refrigerar	2 Días
litrito	P,V	250	p,c	Refrigerar	2 Días
Escaneo de Aniones (F, NO2, NO3, CI, SO4, Br	Р	500	р	Refrigerar	2 Días

Tabla de Requerimientos para Ensayos Microbiológicos en agua

Parámetro	Cantidad mínima para análisis (ml)	Tiempo de almacenamiento	Envase	Preservante
 Coliformes Totales Coliformes Fecales Numeración de Microorganismos Heterótrofos Numeración de E. Coli 	500 ml	30 horas	Frasco de vidrio estéril o bolsa estéril con tapa rosca	Refrigerar a < 10° C
Detección de Salmonella Detección de Vibrio Cholerae	500 ml			
Nemátodes	1000 ml	48 horas	Frasco de vidrio estéril o bolsa estéril con tapa rosca	Refrigerar a < 10° C
Huevos Helmintos (parámetro que se terciariza a un laboratorio externo)	1000 ml	30 horas	Frasco de vidrio estéril o bolsa estéril con tapa rosca	Refrigerar a < 10° C

Parámetro	Cantidad mínima	Envase	Preservante	Tiempo de almacenamiento
DBO5	1000 ml	<u>Plástico o vidrio ámbar</u> <u>de boca ancha</u>	Refrigerado 4 °C	Máximo 24 Horas
Sólidos Suspendidos Totales	1000 ml	Plástico boca ancha	Refrigerado 4°C	Máximo 7 días
Aceite y Grasa	2000 ml	Vidrio ámbar boca ancha	HCL ó H2SO4(1:1) a ph<2. Refrigerado 4°C Aprox. 2.5 ml por Litro	Máximo 28 días
Fosfatos y Nitratos	500 ml	Plástico boca ancha	Refrigerar 4°C Congelar –20°C	24 Horas 72 Horas
Sulfuro	1000 ml	Plástico boca ancha	Acetato de Zinc 2 N T° ambiente 2ml/litro muestra	7 días
<u>Materia Orgánica</u> <u>en sedimento</u> marino	<u>500 g</u>	Envase Plástico boca ancha	<u>Congelar</u>	<u>24 Horas</u>

Tabla de Requerimientos para Cuerpo Receptor Marino

Tabla de Requerimientos para Análisis de Suelo / Sedimento / Lodos

Parámetro	Cantidad mínima	Envase	Preservante	Tiempo de almacenamiento
рН	250 g	Plástico boca ancha	≤ 6°C	Análisis inmediato
Compuestos Orgánicos Volátiles	40 ml	Tubos VOC's	Refrigerar $4^{\circ}C \pm 2^{\circ}C$	7 días
Compuestos Volátiles Especiales (1,2- Dichloroethane, Hexachloroetha ne)	40 ml	Tubos VOC's	Refrigerar 4°C ± 2°C	7 días
Compuestos Semivolátiles Especiales (2,4-D, 2,4- Dinitrotoluene)	40 ml	Tubos VOC's	Refrigerar $4^{\circ}C \pm 2^{\circ}C$	7 días
Sulfuro	250 g	Plástico boca ancha	Acetato de Zn 2N, hasta humedar superficie, ≤ 6°C	7 días
Metales por ICP Óptico	500 g	Plástico	Ninguna	3 meses
Metales por ICP Masa	500 g	Plástico	Ninguna	3 meses
Mercurio	250 g	Plástico	≤ 6°C	28 días
Material Extractable al Hexano (HEM.	250 g	Vidrio boca ancha	Suelo seco ≤ 6°C Lodo o sedimento 1ml de HCL o H2SO4 a pH <2	28 días

Aceites y grasas)			por cada 100 g de	
Hidrocarburo (Método gravimétrico)	250 g	Vidrio boca ancha	Suelo seco ≤ 6°C Lodo o sedimento 1ml de HCL o H2SO4 a pH <2 por cada 100 g de muestra	28 días
Cianuro	200 g	Plástico boca ancha, cubierto con papel aluminio	≤ 6°C	14 días
TCLP análisis Inorgánicos)	500 g	Plástico boca ancha	Ninguno	3 meses
SPLP(análisis Inorgánicos)	500 g	Plástico boca ancha	Ninguno	3 meses
PCB's	250 g	Frasco de vidrio de 250 mL	Refrigerar 4°C ± 2°C	
Fenoles	250 g	de cuello ancho		
Ftalatos	250 g			7 días
ТРН	250 g			
Pesticidas	250 g			
RAS	200 g			
Conductividad	200 g			
Materia Orgánica	200 g			
CIC	200 g			
Cationes solubles	200 g			Acondicionar la muestra
Sodio	200 g		Evitar Humedad, calor,	almacenarla en envase
Intercambiable		Bolsa plástica oscura	luz y Oxigeno cerrar la	de plástico o vidrio,
Fósforo disponible	200 g		bolsa evitando dejar aire	cerrado.
Cationes solubles	200 g		en su interior.	
Carbonatos	200 g			
Bicarbonatos	200 g			
Sulfatos	200 g			
Acidez	200 g	1		
Humedad	200 g	1		Análisis inmediato

Anexo J

(Resumen de los criterios aplicables de calidad de agua y efluentes)

		MEM ¹	MINAM ²	MINAM ³		MINAM ⁴	ļ				MINAM⁵				М	NAM ⁶		
			Límite Máximo Permisible	Efluentes	Categoría 1	Categoría	3	Categoría 4: Conservación del Ambiente Acuático	Categoría 1		Categoría 3		Categoría 4: Conservación del Ambiente Acuático	Categoría 1		Categoría 3		Categoría 4: Conservación del Ambiente Acuático
Parámetro	Unid.	Efluentes Mineros- metalúrgicos	descarga de efluentes líquidos de	Aguas Residuales Domésticas o	Poblacional	Riego de Vegetales y Animales	/ Bebida de	1	A2	D1: Riego de	e vegetales	D2: Bebida de animales	E1. Logunoo y	A2	D1: Riego de v	vegetales	D2: Bebida de animales	E1.1 courses
			minero- metalurgicas	Municipales	A2 Aguas que puede ser potabilizadas con tratamiento convencional	Riego de Vegetales de Tallo alto y bajo	Bebida de Animales	Lagunas y Lagos	Aguas que puede ser potabilizadas con tratamiento convencional	Agua para riego no restringido ©	Agua para riego restringido	Bebida de Animales	Lagos	Aguas que puede ser potabilizadas con tratamiento convencional	Agua para riego no restringido ©	Agua para riego restringido	Bebida de Animales	y Lagos
FÍSICOS Y QUÍMICOS									•									
Aceites y grasas (MEH)	mg/L		20	20	1	1	1	Ausencia de película visíble	1.7	5		10	5.0	1.7	5		10	5.0
Bicarbonatos	mg/L					370				51	8				518			
Calcio	mg/L					200												
Carbonatos	mg/L					5												
Cianuro libre	mg/L	0.1			0.022			0.022						0.2				0.0052
Cianuro WAD	mg/L	0.2			0.08	0.1	0.1			0.	1	0.1			0.1		0.1	
Cianuro Total	mg/L		1					0.2				0.0052						
Cloruros	mg/L				250	100 – 700			250	50	0			250	500			
Color (b)	Color verdadero escala Pt / Co				100	100 – 700			100	100		100	20		100 (a)	100 (a)	20 (a)
Clorofila A								10					0.008	100 (a)				0.008
Conductividad	uS/cm				1,600 ^(x)	< 2,000	≤5,000		1600	2500 5000		5000	1000	1600	2500		5000	1000
Demanda bioquímica de oxígeno (DBO)	mg/L			100	5	15	≤ 15	<5	5	15	15		5	5	15		15	5
Demanda química de oxígeno (DQO)	mg/L			200	20	40	40		20	40)	40		20	40		40	
Detergentes (SAAM)	mg/L				0.5	1	1			0.3	2	0.5			0.2		0.5	
Fenoles	mg/L				0.01	0.001	0.001	0.001		0.0)2	0.01	2.56		0.002		0.01	2.56
Fluoruros	mg/L					1	2			1					1			
Fosfatos P	mg/L					1												
Fosfatos Totales	mg/L							0.4										
Fósforo total	mg/L P				0.15				0.15				0.035	0.15				0.035
Materiales flotantes									Ausencia de Material Flotante de origen antrópico					Ausencia de material flotante de origen antrópico				
Nitratos (NO3-N) + Nitritos (NO2-N)	mg/L				10	10	50	5		10	0	100		50	100		100	
Nitratos (NO3-N)	mg/L				10	10	50	5	50				13	50				13
Nitritos (NO2-N)	mg/L				1	0.06	1		3	1()	10		3	10		10	
Nitrógeno amoniacal	mg/L N				2			<0.02	1.5									
Nitrógeno total								1.6					0.315					0.315

		MEM ¹	MINAM ²	MINAM ³		MINAM ⁴	ļ.				MINAM ⁵				М	IINAM ⁶		
			Límite Máximo Permisible	Efluentes	Categoría 1	Categoría	3	Categoría 4: Conservación del Ambiente Acuático	Categoría 1		Categoría 3		Categoría 4: Conservación del Ambiente Acuático	Categoría 1		Categoría 3	3	Categoría 4: Conservación del Ambiente Acuático
Parámetro	Unid.	Efluentes Mineros- metalúrgicos	descarga de efluentes líquidos de	Aguas Residuales Domésticas o	Poblacional	Riego de Vegetales y Animales	y Bebida de	l agunas v	A2	D1: Riego de	e vegetales	D2: Bebida de animales	F1· Lagunas v	A2	D1: Riego de	vegetales	D2: Bebida de animales	F1: Lagunas
			minero- metalurgicas	Municipales	Aguas que puede ser potabilizadas con tratamiento convencional	Riego de Vegetales de Tallo alto y bajo	Bebida de Animales	Lagos	Aguas que puede ser potabilizadas con tratamiento convencional	Agua para riego no restringido ©	Agua para riego restringido	Bebida de Animales	Lagos	Aguas que puede ser potabilizadas con tratamiento convencional	Agua para riego no restringido ©	Agua para riego restringido	Bebida de Animales	y Lagos
Olor					*													
Oxígeno disuelto	mg/L				≥5	≥4	≥4 > 5		≥5	4		5	≥5	≥5	≥4		≥5	≥5
рH	unidad de pH	6.0 - 9.0	6.0 - 9.0	6.5 - 8.5	5.5 - 9.0	6.5 - 8.5	6.5 - 8.4	6.5 - 8.5	5.5-9.0	6.5-8.5 6.5-8.4		6.5-8.4	6.5-9.0	5.5-9.0	6.5-8.	.5	6.5-8.4	6.5-9.0
Temperatura ©	°C.			<35					Δ3	Δ3 Δ3		Δ3	Δ3	Δ3		Δ3	Δ3	
Sodio	mg/L					200												
Sólidos totales disueltos (STD)	mg/L				1,000			500	1,000	000			1,000	000				
Sólidos totales suspendidos (STS)	mg/L	50	50	ml/l 150				≤25				≤25					≤25	
Amoniáco	ma/l												1.5				(1)	
Sulfator	mg/L					300	500		500	100	0	1000		500	1000)	1000	
Sulfuros de bidrágono (H2S	ilig/∟					300 500			500	100	0	1000		500	1000)	1000	
indisociable)	mg/L							0.002										
Sulfuros	mg/L					0.05	0.05						0.002					0.002
Turbiedad	UNT				100				100					100				
INORGÁNICOS***		1	1	1		I			1			1		1	1		1	1
Aluminio	mg/∟				0.2	5	5		5	5		5		5	5		5	
Antimonio	mg/L				0.006				0.02				0.61	0.02				0.64
Arsénico	mg/L	1	0.1		0.01	0.05	0.1	0.01	0.01	0.1	1	0.2	0.15	0.01	0.1		0.2	0.15
Bario total	mg/L				0.7	0.7		0.7	1	0.7	7		0.7	1	0.7			0.7
Berilio	mg/L				0.04		0.1		0.04	0.1	1	0.1		0.04	0.1		0.1	
Boro	mg/L				0.5	0.5 – 6	5		2.4	1		5		2.4	1		5	
Cadmio	mg/L		0.05		0.003	0.005	0.01	0.004	0.005	0.0	1	0.05	0.00025	0.005	0.01		0.05	
Cadmio disuelto	mg/L		0.05		0.003	0.005	0.01	0.004						0.005	0.01		0.05	0.00025
Cobalto	mg/L					0.05	1			0.0	5	1			0.05	;	1	
Cobre	mg/L	1			2	0.2	0.5	0.02	2	0.2	2	0.5	0.1	2	0.2		0.5	0.1
Cromo total	mg/L		0.5		0.05				0.05	0.1	1	1		0.05	0.1		1	
Cromo VI	mg/L		0.1		0.05	0.1	1	0.05					0.011					0.011
Hierro	mg/L	2	2a		1	1	1		1	5		2.5		1	5			
Litio	mg/L					2.5	2.5			2.5	5				2.5		2.5	
Magnesio	mg/L					150	150					250		0.4			250	
Manganeso	mg/L				0.4	0.2	0.2		0.4	0.2	2	0.2			0.2		0.2	
Mercurio	mg/L		0.002		0.002	0.001	0.001	0.0001	0.002	0.00	01	0.01	0.0001	0.002	0.00	1	0.01	0.0001
Níquel	mg/L				0.025	0.2	0.2	0.025		0.2	2	1	0.052		0.2		1	0.052

		MEM ¹	MINAM ²	MINAM ³			MINAM ⁴								N	IINAM ⁶			
			Límite Máximo Permisible	Efluentes	Categoría 1		Categoría	3	Categoría 4: Conservación del Ambiente Acuático	Categoría 1		Categoría 3		Categoría 4: Conservación del Ambiente Acuático	Categoría 1		Categoría 3	1	Categoría 4: Conservación del Ambiente Acuático
Parámetro	Unid.	Efluentes Mineros- metalúrgicos	descarga de efluentes líquidos de actividades	Aguas Residuales Domésticas o	Poblacional	Riego de '	Vegetales y Animales	r Bebida de	l agunas v	A2	D1: Riego de	e vegetales	D2: Bebida de animales	F1· Lagunas v	A2	D1: Riego de	vegetales	D2: Bebida de animales	F1·Lagunas
			minero- metalurgicas	Municipales	A2 Aguas que puede ser potabilizadas con tratamiento convencional	Riego de Ve Tallo alt	egetales de o y bajo	Bebida de Animales	Lagos	Aguas que puede ser potabilizadas con tratamiento convencional	Agua para riego no restringido ©	Agua para riego restringido	Bebida de Animales	Lagos	Aguas que puede ser potabilizadas con tratamiento convencional	Agua para riego no restringido ©	Agua para riego restringido	Bebida de Animales	y Lagos
Plata	mg/L				0.05	0.0	0.05 0.05												
Plomo	mg/L	0.4	0.2		0.05	0.0	0.05 0.05		0.001	0.05	0.0)5	0.05	0.0025	0.05	0.0	5	0.05	0.0025
Selenio	mg/L				0.05	0.0	0.05 0.05			0.04	0.0)2	0.05	0.005	0.04	0.02	2	0.05	0.005
Talio	mg/L													0.0008					0.0008
Uranio	mg/L				0.02					0.02	02				0.02				
Vanadio	mg/L				0.1														
Zinc	mg/L	3	1.5		5	2	2 24		0.03	5 2 24 0.				0.12	5	2		24	0.12
ORGÁNICOS																			
Compuestos Orgánicos Vo Hidrocarburos de	látiles			1		1	1			1	1	1			1	1			1
petróleo emulsionado o disuelto (C10 - C28 y mayores a C28)										0.02									
Hidrocarburos totales de petróleo (HTTP)	mg/L				0.2									0.5	0.2				0.5
Hexaclorobutadieno	mg/L											0.0006					0.0006		
Trihalometanos		1	1	1	1		1						1	1	1		1		
Trihalometanos Total	mg/L				0.1					1.0					1.0				
Bromoformo	mg/L				0.1										-				
Cloroformo	mg/L				0.1										-				
Dibromoclorometano	mg/L				0.1										-				
Bromodiclorometano	mg/L				0.1										-				
Compuestos Orgánicos Vo	látiles COV	s																	
1,1,1-Tricloroetano - 71-55-6	mg/L				2					0.2					0.2				
1,1-Dicloroetano -75-35-4	mg/L				0.03										-				
1.2-Dicloroetano -107-06-2	mg/L				0.03					0.03					0.03				
1,2-Diclorobenceno -95-50-1	mg/L				1										-				
Hexaclorobutadieno -87-68- 3	mg/L				0.0006					0.0006					0.0006				
Tetracloroetano -127-18-4	mg/L				0.04										-				
Tetracloruro de carbono -56- 23-5	mg/L				0.002					0.004					0.004				
Tricloroeteno -79-01-6	mg/L				0.07					0.07					0.07				

		MEM ¹	MINAM ²	MINAM ³			MINAM	ļ.					N	IINAM ⁶					
			Límite Máximo Permisible	Efluentes	Categoría 1		Categoría	3	Categoría 4: Conservación del Ambiente Acuático	Categoría 1		Categoría 3		Categoría 4: Conservación del Ambiente Acuático	Categoría 1		Categoría 3		Categoría 4: Conservación del Ambiente Acuático
Parámetro	Unid.	Efluentes Mineros- metalúrgicos	descarga de efluentes líquidos de	Aguas Residuales Domésticas o	Poblacional	Riego de V	Vegetales Animales	y Bebida de		A2	D1: Riego de	e vegetales	D2: Bebida de animales	F1. Lagunas y	A2	D1: Riego de	vegetales	D2: Bebida de animales	F1. Lagunas
			minero- metalurgicas	Municipales	A2 Aguas que puede ser potabilizadas con tratamiento convencional	Riego de Ve Tallo alte	Riego de Vegetales de Tallo alto y bajo Bebida de Animales		Lagos	Aguas que puede ser potabilizadas con tratamiento convencional	Agua para riego no restringido ©	Agua para riego restringido	Bebida de Animales	Lagos	Aguas que puede ser potabilizadas con tratamiento convencional	Agua para riego no restringido ©	Agua para riego restringido	Bebida de Animales	y Lagos
BETX																			
Benceno -71-43-2	mg/L				0.01					0.01				0.05	0.01				0.05
Etilbenceno -100-41-4	mg/L				0.3					0.3					0.3				
Tolueno -108-88-3	mg/L				0.7					0.7					0.7				
Xilenos -1330-20-7	mg/L				0.5					0.5					0.5				
Hidrocarburos Aromáticos	5	•	•	1	•	Tallo baio	Tallo alto												
Benzo (a) pireno -50-32-8	mg/L				0.0007	1,000	1,000 2,000 1,00		1,000	0.0007			C	0.0001	0.0007			0.0)001
Pentaclorofenol (PCP)	mg/L				0.009	5,000	5,000	5,000	2,000	0.009				0.001	0.009				0,001
Triclorobencenos (totales)	mg/L				0.02	20	100	20											
Antraceno	mg/L				0.009	5,000	5,000	5,000	2,000					0.0004	0.009				0.0004
Fluoranteno	mg/L				0.02	20 100 20							0.001					0.001	
PLAGUICIDAS			•							•									
Organofosforados:																			
Malatión	mg/L				0.0001					0.0001				0.0001	0.0001				0.0001
Metamidofós (restringido)	mg/L				Ausencia														
Paraquat (restringido)	mg/L				Ausencia														
Paratión	mg/L				Ausencia	7.5 ι	ug/L	7.5 ug/L			35	5	35	0.000013		35		35	0.000013
Organoclorados (Contami	nantes Orgá	nicos Persisten	tes - COP):																
Aldrín -309-00-2	mg/L				Ausencia	0.004	ug/L	0.03 ug/L			0.0	04	0.7	0.000004		0.00	4	0.7	0,000004
Aldrín + Dieldrin	mg/L				Ausencia	0.004	ug/L	0.03 ug/L		0.00003					0.00003				
Clordano	mg/L				Ausencia					0.0002	0.0	06	7	0.0000043	0.0002	0.00	6	7	0,0000043
Clordano (57-74-9)	ug/L					0.	3	0.3											
DDT	mg/L				Ausencia	0.001	l ug/l	1 ug/L		0.001	0.0	01	30	0.000001	0.001	0.00	1	30	0,000001
Dieldrín -60-57-1	mg/L				Ausencia						0.9	5	0.5	0.000056		0.5		0.5	0,000056
Dieldrín -72-20-8	ug/l					0.	7	0.7											
Endosulfán	mg/L				0.000056	0.02	ug/L	0.02 ug/L			0.0)1	0.01	0.000056		0.0	1	0.01	0,000056
Endrín -72-20-8	mg/L				Ausencia														
Endrín	ug/L					0.0	04	0.004		0.0006	0.0	04	0.2	0.000036	0.0006	0.00	4	0.2	0,000036

		MEM ¹	MINAM ²	MINAM ³			MINAM ⁴	Ļ				MINAM ⁵				Ν	IINAM ⁶		
			Límite Máximo Permisible	Efluentes	Categoría 1		Categoría	3	Categoría 4: Conservación del Ambiente Acuático	Categoría 1		Categoría 3		Categoría 4: Conservación del Ambiente Acuático	Categoría 1		Categoría 3	1	Categoría 4: Conservación del Ambiente Acuático
Parámetro	Unid.	Efluentes Mineros- metalúrgicos	descarga de efluentes líquidos de	Aguas Residuales Domésticas o	Poblacional	Riego de '	Vegetales y Animales	/ Bebida de	Lawrence of	A2	D1: Riego de	e vegetales	D2: Bebida de animales	E1. Loginoo v	A2	D1: Riego de	vegetales	D2: Bebida de animales	E1. Logunoo
			minero- metalurgicas	Municipales	A2 Aguas que puede ser potabilizadas con tratamiento convencional	Riego de Ve Tallo alt	egetales de o y bajo	Bebida de Animales	Lagunas y Lagos	Aguas que puede ser potabilizadas con tratamiento convencional	Agua para riego no restringido ©	Agua para riego restringido	Bebida de Animales	E I: Lagunas y Lagos	Aguas que puede ser potabilizadas con tratamiento convencional	Agua para riego no restringido ©	Agua para riego restringido	Bebida de Animales	y Lagos
Heptacloro -76-44-8	mg/L				Ausencia	0.1 u	ug/L	0.1 ug/L						0.000038					0,000038
Heptacloriepóxido	ug/L					0.1 u	ug/L	0.1		0.00003	0.0	1	0.03	0.0000038		0.0	1	0.03	
Heptacloro epóxido 1024-57- 3	mg/L				0.00003										0.00003				0,0000038
Lindano	mg/L				Ausencia	4 u	g/L	4 ug/L		0.002	4		4	0.00095	0.002	4	I	4	0,00095
Carbamato:	•	•	l	1	L	1		1		I	I		1		1	l		l	
Aldicarb (restringido)	mg/L				Ausencia														
Aldicarb	ug/L					1		1		0.01	1		11	0.001	0.01	1		11	0,001
Cianotovinas	1		1	1	I	1		I		1	I		1		1	1		1	
Microcistina-LR	mg/L				0.000001										0.001				
	.R mg/L 0.000001																		
Policloruros bifenilos tota	les	1		1		1	1	1		1					1			[
Policloruros bifenilos totales (PCBs)	mg/L				0.000001					0.0005	0.04		0.045	0.000014	0.0005	0.04	4	0.045	0,000014
MICROBIOLÓGICOS					1	Tallo bajo	Tallo alto												
Coliformes termotolerantes (44.5°C)	NMP/100mL			10,000	2,000	1,000	2,000	1,000	1,000	2,000	1,00	00	1,000	1,000	2,000	1,000	2000	1,000	1,000
Coliformes totales (35 - 37ºC)	NMP/100mL				3,000	5,000	5,000	5,000	2,000	5000	1,00	00	5,000						
Enterococos	NMP/100mL					20	100	20											
Enterococos fecales	NMP/100mL				0						20)	20						
Escherichia coli	NMP/100mL				0	100	100	100			10	0	100			1000			
Formas parasitarias <i>=Parasiot sy protozoarios</i>	Organismo/L				0														
Giardia Duodenalis	Organismo/L				Ausencia														
Microcistina-LR																			
Huevos de Helmintos	Huevos/litro					< 1	< 1	< 1			<1		<1			1	1	-	
Salmonella sp.	mg/L					Ausente	Ausente	Ausente		0.001									
Salmonella	Presencia/100 mL				Ausencia														
Vibrio Cholerae	Presencia/100 mL				Ausencia	Ausente	Ausente	Ausente		Ausente					Ausencia				
Organismos de vida libre (algas, protozoarios, copépodos, rotiferos, nemátodos, en todos sus estadios evolutivos) (f)	N° Organismo/L				Ausencia	Ausente	Ausente	Ausente		<5x10 ⁶					<5x10 ⁶				

Ī			MEM ¹	MINAM ²	MINAM ³		MINAM ⁴	ļ				MINAM ⁵			
	Parámetro U			Límite Máximo Permisible	Efluentes	Categoría 1	Categoría :	3	Categoría 4: Conservación del Ambiente Acuático	Categoría 1		Categoría 3		Categoría 4: Conservación del Ambiente Acuático	
		Unid.	Efluentes Mineros- metalúrgicos	descarga de efluentes líquidos de actividades	Aguas Residuales Domésticas o	Poblacional	Riego de Vegetales y Animales	/ Bebida de	l agunas v	A2	D1: Riego de	e vegetales	D2: Bebida de animales	F1· Lagunas v	
				minero- metalurgicas	Municipales	A2 Aguas que puede ser potabilizadas con tratamiento convencional	Riego de Vegetales de Tallo alto y bajo	Bebida de Animales	Lagos	Aguas que puede ser potabilizadas con tratamiento convencional	Agua para riego no restringido ©	Agua para riego restringido	Bebida de Animales	Lagos	

Notas:

MEH Material extraíble en Hexano.

NMP Número más probable.

SAAM Sustancias activas en azul de metileno.

UNT Unidad nefelométrica de turbiedad.

Una celda en blanco indica que no hay lineamiento para ese parámetro. (a) EPA SW-846

(b) ICP-GH

(c) La temperatura corresponde al promedio mensual del área evaluada

Fuente:

¹MEM – RM Nº 011-96-EM/VMM – Niveles máximos permisibles para efluentes líquidos minero-metalúrgicos (1996 y 1997)

² MINAM - DS N° 010-2010-MINAM-Límite máximos permisibles para la descarga de efluentes líquidos de actividades mineras-metalúrgicas (Agosto, 2010)

³ MINAN- DS N°003-2010-MINAMV-Límite máximos permisibles para los efluentes de plantas de tratamiento de agua residual doméstica o municipal (Marzo, 2010)

⁴ MINAM – DS Nº 002-2008-MINAM – Estándares nacionales de calidad ambiental para agua (Julio, 2008)

⁵ MINAM – DS Nº 015-2015-MINAM – Modifican los estándares nacionales de calidad ambiental para agua y establecen disposiciones complementarias para su aplicación (Diciembre, 2015)

⁶ MINAM – DS Nº 004-2017-MINAM – Estándares de calidad ambiental (ECA) para agua y establecen disposiciones complementarias (Junio, 2017)

MINAM ⁶				
Categoría 1	Categoría 3			Categoría 4: Conservación del Ambiente Acuático
A2	D1: Riego de vegetales		D2: Bebida de animales	F1: Lagunas
Aguas que puede ser potabilizadas con tratamiento convencional	Agua para riego no restringido ©	Agua para riego restringido	Bebida de Animales	y Lagos