UNIVERSIDAD NACIONAL FEDERICO VILLARREAL

FACULTAD DE INGENIERÍA CIVIL

EVALUACIÓN SÍSMICA DE UN EDIFICIO APORTICADO DE SIETE PISOS CON CUATRO SÓTANOS PROTEGIDO CON AISLADORES ELASTOMÉRICOS

TESIS PARA OPTAR EL TÍTULO PROFESIONAL DE

INGENIERO CIVIL

WILLIAM MARTÍN CHUQUILLANQUI GUERRA

LIMA - PERÚ

2016

<u>ÍNDICE</u>

RESUMEN	vi
ÍNDICE GENERAL	viii
ÍNDICE DE FIGURAS	xii
ÍNDICE DE TABLAS	xv
INTRODUCCIÓN	xvii
CAPITULO 1: PLANTEAMIENTO DEL PROBLEMA	
1.1 ANTECEDENTES	1
1.2 PROBLEMA	4
1.2.1 Problema principal	4
1.2.2 Problemas secundarios	4
1.3 OBJETIVO DE LA INVESTIGACIÓN	5
1.3.1 Objetivo General	5
1.3.2 Objetivos específicos	5
1.4 JUSTIFICACIÓN E IMPORTANCIA	6
1.4.1 Justificación de la investigación	6
1.4.1.1 Metodológica	6
1.4.1.2 Social	6
1.4.2 Importancia de la investigación	8

CAPITULO 2: MARCO TEORICO

2.1 ANTECEDENTES DE LA INVESTIGACIÓN	9
2.2 OBJETIVO Y PRINCIPIO DEL SISTEMA DE AISLACIÓN	11
2.2.1 Objetivo del sistema de aislación	11
2.2.2 Principios del sistema de aislación	12
2.3 MARCO CONCEPTUAL	13
2.3.1 Aisladores elastoméricos.	13
2.3.1.1 Aisladores de goma Natural	14
2.3.1.2 Aisladores con núcleo de plomo	15
2.3.1.3 Aisladores de alto amortiguamiento	17
2.3.2 Deslizadores friccionales	20
2.3.2.1 Deslizadores planos	20
2.3.2.2 Deslizadores cóncavos	22
2.3.3 Modelo Bilineal y de aisladores y deslizadores	22
2.3.3.1 Aisladores de alto amortiguamiento	25
2.3.3.2 Aisladores con núcleo de plomo	27
2.3.3.3 Deslizadores planos	28
2.4 MARCO LEGAL	29
2.4.1 REGLAMENTO NACIONAL DE EDIFICACIONES E.030	29

2.4.2 ASCE 7-10	33
2.5 HIPÓTESIS.	36
2.5.1 Hipótesis principal	36
2.5.2 Hipótesis Secundarias	36
CAPITULO 3: METODOLOGÍA	
3.1 DISEÑO DE LA INVESTIGACIÓN	38
3.1.1 Tipo	38
3.1.2 Diseño	38
3.1.3 Variables	38
3.1.4 Indicadores	39
3.1.5 Operacionalización de las variables	39
3.2 INSTRUMENTOS Y MUESTRA DE ESTUDIO	40
3.2.1 Instrumentos.	40
3.2.1.1 Fuentes de información	41
3.2.1.2 Software de Análisis	41
3.2.2 Muestra de estudio	42
3.3 ANÁLISIS SÍSMICO DE MUESTRA EMPOTRADA	44
3.3.1 Parámetros Sísmicos	44

3.3.2 Análisis de respuesta espectral	47
3.3.3 Análisis Historia en el tiempo	48
3.3.3.1 Registros sísmicos para evaluación	48
3.4 DISEÑO DE SISTEMAS DE AISLACIÓN	52
3.4.1 Consideraciones de diseño	52
3.4.2 Diseño de aislador de alto amortiguamiento	54
3.4.3 Modelo bilineal de aislador de alto amortiguamiento	60
3.4.4 Diseño de aisladores con núcleo de plomo	63
3.4.5 Modelo bilineal de aislador con núcleo de plomo	72
3.4.6 Consideraciones para los de deslizadores	73
CAPITULO 4: RESULTADOS	
4.1 Desplazamiento del sistema de aislación	78
4.2 Aceleración absoluta	85
4.3 Desplazamiento relativo de la estructura	86
4.4 Fuerzas sísmicas	88
CONCLUSIONES	89
RECOMENDACIONES	91
ANEXOS	93
BIBLIOGRAFIA	96

ÍNDICE DE FIGURAS

Figura 1.1 Cinturón de fuego del Pacifico	7
Figura 2.1 Comportamiento de estructura sin y con aisladores ante un sismo	11
Figura 2.2 Modificación del periodo natural de una estructura aislad	12
Figura 2.3 Aceleración y desplazamiento por respuesta espectral incremento de	13
Figura 2.4 Aislador de goma natural	14
Figura 2.5 Ciclo Histeretico de aislador de goma natural (LDRB)	15
Figura 2.6 Aislador con núcleo de plomo (LRB)	16
Figura 2.7 Aislador con núcleo de plomo (LRB)	17
Figura 2.8 Aislador de alto amortiguamiento (HDRB)	18
Figura 2.9 Ciclo histeretico de aislador de alto amortiguamiento (HDRB)	19
Figura 2.10 Apoyo deslizante plano	21
Figura 2.11 Diagrama Fuerza-Desplazamiento de deslizante plano	21
Figura 2.12 Aislador con péndulo friccional	22
Figura 2.13 Modelo bilineal de aislador	23
Figura 2.14 Zonificación propuesta en norma	30
Figura 3.1 Vista frontal de Edificio Corporativo Graña y Montero	42
Figura 3.2 Vista lateral de Edificio Corporativo Graña y Montero	43

Figura 3.3 Vista de modelo de estructura empotrada en software ETABS46
Figura 3.4 Registros de aceleración del Sismo del 17 de octubre de 196649
Figura 3.5 Registros de aceleración del Sismo del 31 de mayo de 197050
Figura 3.6 Registros de aceleración del Sismo del 03 de octubre de 197450
Figura 3.7 Esquema vertical de posición de aisladores y deslizadores
Figura 3.8 Esquema de la distribución de aisladores ubicados en nivel 0.00
Figura 3.9 Propiedades de materiales que componen el aislador HDRB57
Figura 3.10 Propuesta de diseño de aislador de alto amortiguamiento (HDRB)60
Figura 3.11 Propiedades de materiales que componen el aislador LRB
Figura 3.12 Propuesta de diseño de aislador con núcleo de plomo (LRB)71
Figura 3.13 Modelo estructural aislado propuesto de muestra en ETABS75
Figura 3.14 Ingreso de propiedades de aislador HDRB a programa76
Figura 3.15 Ingreso de propiedades de aislador LRB a programa76
Figura 4.1 Desplazamiento del sistema de aislación en dirección X. (cm)79
Figura 4.2 Desplazamiento del sistema de aislación en dirección Y. (cm)79
Figura 4.3 Desplazamiento del nivel de aislamiento en dirección X. Sistema HDRB81
Figura 4.4 Desplazamiento del nivel de aislamiento en dirección Y. Sistema HDRB81
Figura 4.5 Desplazamiento del nivel de aislamiento en dirección X. Sistema LRB81
Figura 4.6 Desplazamiento del nivel de aislamiento en dirección Y. Sistema LRB81
Figura 4.7 Gráfica fuerza Desplazamiento en dirección X del sistema HDRB83

Figura 4.8 Gráfica fuerza desplazamiento en dirección Y del sistema HDRB83
Figura 4.9 Gráfica fuerza desplazamiento en dirección X del Sistema LRB83
Figura 4.10 Gráfica fuerza desplazamiento en dirección Y del Sistema LRB83
Figura 4.11 Gráfica fuerza vs deformación de aislador N°1 del sistema HDRB84
Figura 4.12 Gráfica fuerza vs deformación de aislador N°1 del sistema LRB84
Figura 4.13 Gráfica fuerza vs deformación de aislador N°13 del sistema HDRB84
Figura 4.14 Gráfica fuerza vs deformación de aislador N°13 del sistema LRB84
Figura 4.15 Gráfica fuerza vs deformación de aislador N°28 del sistema HDRB84
Figura 4.16 Gráfica fuerza vs deformación de aislador N°28 del sistema LRB84

ÍNDICE DE TABLAS

Tabla 2.1: Factores de zona de Norma Peruana	30
Tabla 2.2: Tipos de perfiles de suelo	31
Tabla 2.3: Categorías de edificaciones con respectivo factor	31
Tabla 2.4: Categorías de edificaciones con respectivo factor	32
Tabla 2.5: Límite máximo de desplazamiento relativo	33
Tabla 2.6: Coeficiente de amortiguamiento (B _D o B _M)	32
Tabla 2.7: Cargas y desplazamientos mínimos.	35
Tabla 3.1: Operacionalización de variables dependientes	39
Tabla 3.2: Operacionalización de variables independientes	40
Tabla 3.3: Cuadro de cargas muertas	47
Tabla 3.4: Cuadro de cargas vivas	48
Tabla 3.5: Desplazamientos relativos máximos de entrepiso	48
Tabla 3.6: Registros sísmicos incidentes en la ciudad de Lima	49
Tabla 3.7: Desplazamientos absolutos desde el C.G de planta. (cm)	51
Tabla 3.8: Desplazamientos relativos de entrepiso	51
Tabla 3.9: Especificaciones técnicas para ambos tipos de aisladores	74
Tabla 3.10 Propiedades bilineales para ambos tipos de aisladores	74

Tabla 4.1 Desplazamientos de diseño y máximo, expresado en cm	78
Tabla 4.2 Desplazamientos absolutos en dirección X (cm)	80
Tabla 4.3 Desplazamientos absolutos en dirección Y (cm)	.80
Tabla 4.4 Aceleración absoluta de superestructura en dirección X. (cm)	.85
Tabla 4.5 Aceleración absoluta de superestructura en dirección Y. (cm)	86
Tabla 4.6 Desplazamientos relativo de superestructura en dirección X.	86
Tabla 4.7 Desplazamientos relativo de superestructura en dirección Y	.87
Tabla 4.8 Fuerzas sísmicas en dirección X (Ton)	.88
Tabla 4.9 Fuerzas sísmicas en dirección Y (Ton)	88