FACULTAD DE TECNOLOGÍA MÉDICA

SEROPREVALENCIA DE ANTICUERPOS ANTI-Brucella sp. EN DONANTES DEL BANCO DE SANGRE EN UN HOSPITAL MATERNO INFANTIL DE LIMA

TESIS PARA OPTAR EL TÍTULO DE ESPECIALISTA EN HEMOTERAPIA Y BANCO DE SANGRE

AUTOR

EVERT SEGUNDO SUÁREZ OBREGÓN

ASESORA

CRUZ GONZALES GLORIA ESPERANZA

JURADOS

LAGOS CASTILLO MORAYMA ANGÉLICA

GARAY BAMBAREN JUANA AMPARO

GUERRERO BARRANTES CÉSAR ENRIQUE

Lima – Perú

2019
SEROPREVALENCIA DE ANTICUERPOS ANTI-Brucella sp. EN DONANTES DEL BANCO DE SANGRE EN UN HOSPITAL MATERNO INFANTIL.

Suárez Obregón, Evert Segundo
DEDICATORIA

A Dios, nuestro creador, por darme la dicha de servir a la sociedad.

A mi familia y a mi hija Arelys por sus palabras de aliento para alcanzar mis objetivos.
AGRADECIMIENTOS

A mi asesora de tesis, Dra. Gloria Esperanza Cruz Gonzales, por la confianza, la comprensión, el tiempo, apoyo y la orientación brindada para la elaboración de esta tesis.

Al Dr. Alfredo Guillén Oneeglio, por compartir sus conocimientos, motivación y recomendaciones para la realización de la presente tesis.

Al Dr. Manuel Leiva Beraún, por brindarme su apoyo y facilidades para la realización de esta tesis.

Al Lic. T.M. Andrés Lara Rodríguez, por su apoyo en todo momento.

Al Lic. T.M. Manolo A. León Velásquez por su apoyo y sus recomendaciones.

A los internos de Tecnología Médica de HONADOMANI “San Bartolomé”, por sus palabras de ánimo hacia mi persona.
ÍNDICE

TÍTULO..2
DEDICATORIA..3
AGRADECIMIENTOS..4
RESUMEN ...8
ABSTRACT ..9
CAPÍTULO I. PLANTEAMIENTO DEL PROBLEMA ...12
 1.1. Descripción e identificación del problema ...12
 1.2. Formulación de las preguntas ..14
 1.2.1. Pregunta general ...14
 1.2.2. Preguntas específicas: ..14
 1.3. Objetivos ...15
 1.3.1. Objetivo general: ...15
 1.3.2. Objetivos Específicos: ...15
 1.4. Justificación ...15
 1.5. Limitaciones ...16
CAPÍTULO II. MARCO TEÓRICO ...17
 2.1. Antecedentes ...17
 2.2. Bases teóricas ...22
 2.2.1. Brucella.: Antecedentes Históricos ...22
 2.2.2. Brucella sp...22
 2.2.3. Especies y características del género Brucella ...23
 2.2.4. Estructura antigénica ...25
2.2.5. Epidemiología ... 27
2.2.6. Brucelosis .. 27
2.2.6.1. Modo de transmisión ... 28
2.2.6.2. Cuadro clínico en el hombre .. 29
2.2.6.3. Respuesta inmune ... 31
2.2.7. Pruebas para el diagnóstico de la brucelosis ... 33
2.2.8.- Donación de sangre .. 39
2.2.8.1.- Tipo de donantes ... 40
2.2.8.2.- Hemocomponentes .. 41
2.2.8.3. Seguridad sanguínea ... 42
2.2.8.4 Transfusión sanguínea .. 43
2.2.8.5. Riesgos de las transfusiones .. 43
2.3. Definición de términos básicos .. 44

CAPÍTULO III. HIPÓTESIS Y VARIABLES ... 45

3.1. Hipótesis ... 45
3.2. Variables y su operacionalización ... 45

CAPÍTULO IV. METODOLOGÍA .. 47

4.1.- Tipo y diseño de estudio ... 47
4.2. Población y muestra ... 47
4.2.1. Población .. 47
4.2.2. Muestra .. 47
4.3. Criterios de exclusión: .. 48
4.4. Instrumento de recolección de datos: .. 48
4.5. Procedimientos, materiales y equipos ... 48

4.5.1. Reactivos ... 48

4.5.2. Equipos .. 49

4.5.3. Procedimiento .. 49

4.6. Análisis de datos ... 50

4.7. Aspectos éticos ... 50

CAPÍTULO V.

RESULTADOS ... 51

DISCUSIÓN ... 57

CONCLUSIONES ... 59

RECOMENDACIONES ... 60

REFERENCIAS ... 61

ANEXOS ... 67
Resumen

Actualmente, existe el riesgo de transmisión de brucelosis por medio de una transfusión sanguínea por no ser parte del tamizaje inmunoserológico

Objetivo: Determinar la prevalencia serológica de anticuerpos anti *Brucella* sp. en donantes de sangre que acudieron al Hospital Nacional San Bartolomé. Se efectuó un estudio cuantitativo, descriptivo de corte transversal, cuyo diseño fue no experimental. Se analizaron 698 sueros de donantes que acudieron al banco de sangre en el año 2016, a los cuales posteriormente se les realizó la prueba de rosa de bengala (test de aglutinación macroscópica). Los sueros de los donantes estuvieron conservados a una temperatura menos 70°C. Se clasificó a la población según su género, 9 con reacción positiva fueron de género masculino (1.2%), de acuerdo a la procedencia, son los del norte de la provincia de Lima los que tienen prevalencia de 0.71%, los de ocupación independiente prevalece en un 1%. La totalidad de donantes reactivos al test de rosa de bengala fueron donantes por reposición.

Conclusión: Luego de realizar las pruebas a los 698 sueros del total de donantes, se llegó a determinar que la seroprevalencia de anticuerpos anti-*Brucella* sp. fue de 2.15 %, de donantes que acudieron en el año 2016.

Discusión: La investigación permitió conocer y determinar la seroprevalencia de anticuerpos de anti-*Brucella* sp. en donantes de sangre, llegándose a conocer que existe alta probabilidad de que los donantes de sangre sean portadores y trasmisores de brucelosis.

Palabras claves: Donantes de sangre, *Brucella* sp, seroprevalencia, test rosa de bengala.
Abstract

Currently, there is a risk of brucellosis transmission through a blood transfusion because it is not part of the immunoserological screening.

Objective: To determine the serological prevalence of antibodies against Brucella sp. in blood donors who went to the San Bartolomé National Hospital.

A quantitative, descriptive, cross-sectional study was carried out, the design of which was non-experimental. We analyzed 698 sera from donors that went to the blood bank in 2016, which were later tested for rose bengal test (macroscopic agglutination test). Donor sera were stored at a temperature of -70 ° C. The population was classified by gender, 9 with positive reaction were male (1.2%), according to the source, are those in the north of the province of Lima those with a prevalence of 0.71%, independent occupation prevails by 1%. The total number of donors reactive to the Bengal Rose test were replacement donors.

Conclusion: After performing the tests on the 698 sera of the total donors, it was determined that the seroprevalence of anti-Brucella sp. it was 2.15%, of donors who attended in 2016.

Discussion: The investigation allowed to know and determine the seroprevalence of anti-Brucella sp antibodies. in blood donors, becoming aware that there is a high probability that blood donors are carriers and transmitters of brucellosis.

Key Words: Blood donors, Brucella sp, seroprevalence, pink test Bengal.
Introducción

Como cualquier decisión terapéutica, la decisión de transfundir o no a un paciente conlleva sus riesgos. Las transfusión sanguínea sería uno de esos riesgos, por lo tanto esta debe cumplir los criterios de calidad como el tamizaje serológico de los siete marcadores infecciosos: anticuerpos anti HIV, HTLV, HCV, Treponema pallidum, Trypanosoma cruzi, anti core de hepatitis B y antígeno australiano de hepatitis B. Tal caso es el ejemplo del Perú. Pero, en territorios donde hay prevalencia de Brucella sp., es de necesaria determinación. La brucelosis es una zoonosis que la produce la Brucella, que se contagia cuando existe contacto con animales infectados, o por consumo productos como la leche sin pasteurizar o sus derivados y por contacto de índole laboral u ocupacional, motivo por la cual hace que sea frecuente en el hombre. También se podría dar un contagio por transfusiones sanguíneas y transplantantes.

Muchos autores mencionan que América Latina, es una de las regiones del mundo que se caracteriza por ser endémico a brucelosis, y resalta a Argentina, México y Perú como las repúblicas en que ocurre la zoonosis en mención. Y esto se ocurre cuando hay consumo de lácteos que no los han pasteurizado debidamente y cuando hay contacto con ganado infectado. Sin embargo, son pocos los trabajos de investigación que abordan este tema. Es así que nace la inquietud de investigar esa probabilidad. Por lo tanto, conociendo que nuestro banco de sangre acoge a un sinnúmero de donantes, se hace más interesante el universo de posibilidades para identificar sueros con resultado reactivo a nuestro estudio.

La motivación del presente trabajo de investigación, se debió a que la literatura internacional señala a nuestro país como país endémico de esta zoonosis, relacionado a otros países como lo son México y la Argentina. Puesto que en estos países se realiza el screening obligatorio para detectar infección a brucelosis, existe la probabilidad de que nuestros donantes padezcan de brucelosis que no haya sido diagnosticada en su momento o
subdiagnosticada (tal como lo han notificado varios autores). Y cualquier hemocomponente podría convertirse en un vehículo peligroso para adquirir la enfermedad por transfusión.

La presente tesis contiene información de la prevalencia de esta infección, y de qué zonas de la capital y del país, provienen donantes que podrían ser portadores y transmitir esta infección, es decir identificar quienes podrían ser portadores de esta zoonosis, así como conocer la zona de procedencia, edad, ocupación, procedencia, etc.

El objetivo de esta tesis fue determinar la seroprevalencia de anticuerpos anti-Brucella sp. en donantes de Banco de Sangre del Hospital Nacional Docente Madre-Niño San Bartolomé, durante el año 2016.

La metodología de esta tesis es un estudio descriptivo de corte transversal o transeccional.
Capítulo I

Planteamiento del problema

1.1. Descripción e identificación del problema

La Brucelosis es una enfermedad de alta prevalencia en las especies animales susceptibles y de poca frecuencia en humanos, donde la mayoría de los casos no han sido reportados o su cuadro clínico pasa desapercibido, conociéndose bien la enfermedad, pero no su grado de antropozoonosis (Villalobos, 1993, p. 90).

Los principales síntomas son fiebre, dolor y sudoración, se suelen presentar síntomas digestivos y nerviosos y estos síntomas pueden permanecer por semanas o meses (Pardo, 2010, p. 10).

Uno de los principales riesgos durante el proceso de transfusión sanguínea (a través de cualquiera de los hemocomponentes), es la posible transmisión de enfermedades infecciosas como virus, parasitosis e infección por bacterias.

Acha (2001), señala que: “También se ha reseñado transmisión interhumana por transfusión o trasplante de médula ósea” (p. 40).

Radillo (2006), menciona que: “desafortunadamente 80% de personas con brucelosis cursan asintomáticos” (p. 656).

Acha (2001), menciona que: “En América Latina los países en donde se registra el mayor número de casos son Argentina, México y Perú. Lo mismo sucede en los países que bordean el Mar Mediterráneo, y en el Irán, la antigua Unión Soviética y Mongolia (p. 29).

Radillo (2006), afirma que: “Donadores de sangre con anticuerpos positivos son comunes en México, Grecia, España y algunas zonas rurales de Estados Unidos de Norteamérica” (p.656).
Navarro (2005), menciona que:
El problema de Brucelosis humana en el Perú está circunscrito principalmente a Lima y Callao, donde se registran el 95% de los casos notificados en el país y en donde continúa la costumbre ancestral de consumir queso fresco sin pasteurizar de cabra. La mayor incidencia de esta zoonosis se registra en los meses de setiembre a febrero (p.0).

Fuentes (2001), argumenta que:
No existen estudios en nuestro país que señalen si los donantes de sangre presentan este agente infeccioso. Dentro de las normas que rigen la obtención y procesamiento de la sangre, relacionados a la Ley 26454, se encuentran la realización de siete pruebas de marcadores serológicos para el descarte de infecciones bacterianas, virales y parasitarias, no incluyéndose a la Brucella en este grupo (p. 85).

Ortega (2007), menciona que en el Perú: “La Brucelosis es debida principalmente a Brucella melitensis y la principal fuente de infección es el consumo de queso fresco de cabra y alimentos preparados con éste. Y se han reportado casos en las regiones de Lima y Callao” (p. 431).

En el Perú, existe el riesgo de transmisión de la infección por vía transfusional por no ser parte del tamizaje que se realiza en los Centros de Hemoterapia y Bancos de Sangre.

El problema de Brucelosis humana en el Perú está circunscrito principalmente a Lima y Callao, donde se registran el 95% de los casos notificados en el país y en donde continúa la costumbre ancestral de consumir queso fresco sin pasteurizar de cabra. La mayor incidencia de esta zoonosis se registra en los meses de setiembre a febrero (Navarro, 2005).

En otros países como Argentina, al igual que otros países endémicos, existe la obligatoriedad del control para brucelosis de las transfusiones sanguíneas y de los donantes
de órganos en caso de transplante. Esto hace imprescindible el desarrollo de técnicas de screening adecuadas, estandarizadas y con alta sensibilidad y especificidad (Etcheves, 2004).

En otros países como en la República Mexicana, únicamente se recomienda la prueba a donantes de áreas endémicas (Radillo, 2006, p.656).

1.2. Formulación de las preguntas

1.2.1. Pregunta general.
 a) ¿Cuál es la seroprevalencia de anticuerpos anti-Brucella sp. en donantes del Banco de Sangre del Hospital Nacional Docente Madre-Niño San Bartolomé, durante el año 2016?

1.2.2. Preguntas específicas.
 a) ¿Cuál es la seroprevalencia de anticuerpos anti-Brucella sp. de acuerdo al lugar de procedencia de los donantes Banco de Sangre del Hospital Nacional Docente Madre-Niño San Bartolomé, durante el año 2016?
 b) ¿Cuál es la seroprevalencia de anticuerpos anti-Brucella sp. de acuerdo al oficio u ocupación en los donantes de Banco de Sangre del Hospital Nacional Docente Madre-Niño San Bartolomé, durante el año 2016?
 c) Según el género, ¿cuál es la seroprevalencia de anticuerpos anti-Brucella sp. en donantes Banco de Sangre del Hospital Nacional Docente Madre-Niño San Bartolomé, durante el año 2016?
 d) Según el tipo de donante, ¿cuál es la seroprevalencia de anticuerpos anti-Brucella sp. en donantes de Banco de Sangre del Hospital Nacional Docente Madre-Niño San Bartolomé, durante el año 2016?
1.3. Objetivos

1.3.1. Objetivo general.
 a) Determinar la seroprevalencia de anticuerpos anti-\textit{Brucella sp.} en donantes de Banco de Sangre del Hospital Nacional Docente Madre-Niño San Bartolomé, durante el año 2016.

1.3.2. Objetivos Específicos.
 a) Determinar la seroprevalencia de anticuerpos anti-\textit{Brucella sp.} de acuerdo al lugar de procedencia de los donantes de Banco de Sangre del Hospital Nacional Docente Madre-Niño San Bartolomé, durante el año 2016.
 b) Detectar la seroprevalencia de anticuerpos anti-\textit{Brucella sp.} de acuerdo al oficio u ocupación en los donantes de Banco de Sangre del Hospital Nacional Docente Madre-Niño San Bartolomé, durante el año 2016.
 c) Identificar, según el género, cuál es la seroprevalencia de anticuerpos anti-\textit{Brucella sp.} en donantes de Banco de Sangre del Hospital Nacional Docente Madre-Niño San Bartolomé, durante el año 2016.
 d) Identificar, según el tipo de donante, cuál es la seroprevalencia de anticuerpos anti-\textit{Brucella sp.} en donantes de Banco de Sangre del Hospital Nacional Docente Madre-Niño San Bartolomé, durante el año 2016.

1.4. Justificación

Este trabajo de investigación, lo considero relevante, ya que por medio de su realización se determinó la seroprevalencia de anticuerpos anti-\textit{Brucella sp.} en donantes de sangre en nuestro banco de sangre, que acudieron en el año 2016, y esto permitirá conocer la importancia de su detección en las donaciones que se realizarán en un futuro, ya que nuestro
hospital al ser un hospital de referencia nacional, acoge a sus donantes de sangre de todas partes del Perú, así mismo cabe resaltar que literaturas internacionales describen al Perú como un país endémico de esta zoonosis. Y esto se debería realizar en todos los bancos de sangre de todo el país.

También cabe resaltar que en algunas revistas científicas mencionan que Lima y el Callao son las dos regiones donde se han reportado más casos de brucelosis humana. Aunque la brucelosis se transmite mayormente por contacto directo con animales infectados, son las personas que se dedican a la ganadería bovina, caprina, porcina (principalmente de áreas rurales del interior del país) las que están expuestas a esta zoonosis, nos referimos a aquellos ganaderos que no vacunan a su ganado. También no debemos dejar de mencionar que trabajos de investigación de países vecinos han reportado que los médicos veterinarios también están en riesgo de ser portadores de esta bacteria, si es que entran en contacto con ganado portador de esta bacteria.

1.5. Limitaciones

Una de la limitaciones más notorias durante la realización de este trabajo de investigación, ha sido la escasez de reactivos complementarios en el mercado local para la confirmación de este agente (antígeno para el test en tubo y test 2 mercapto-etanol), tanto en los principales establecimientos hospitalarios de Lima, así como también en el ente rector, como lo es el Instituto Nacional de Salud (INS), pues se tuvo que enviar los sueros positivos para que se realice su confirmación, y se mantuvo tres meses en custodia, en dicho establecimiento, sin que se haya podido realizar hasta el momento las pruebas. Para no perder la inversión realizada en INS, y el objetivo de esta investigación, solo se realizó test de rosa de bengala y ELISA Ig G e Ig M en dicha institución (ver anexo 3).
Capítulo II

Marco teórico

2.1. Antecedentes

Álvarez (2014), en México, publicó “la prevalencia de Brucella y otros marcadores serológicos reactivos en donadores del banco de sangre del Hospital Materno Perinatal Mónica Pretelini Sáenz, de Toluca,” según la NOM-253-SSA1-2012, en donadores que asistieron durante el año 2013 al Banco de Sangre del Hospital Materno Perinatal Mónica Pretelini Sáenz de la ciudad de Toluca. Esta prevalencia fue de 0.73%, seguida de Trypanosoma cruzi con 0.46%, VHC con 0.40%, VIH con 0.26%, Treponema pallidum con 0.25% y por último VHB con 0.04%.

Barrera (2010), en Colombia publicó “Seroprevalencia de anticuerpos anti-Brucella sp. en donantes del Banco de Sangre de la Cruz Roja Colombiana seccional Meta”, con un estudio descriptivo de corte transversal, se analizaron 100 muestras de suero recolectadas en un periodo de tiempo comprendido entre septiembre y octubre de 2010. La prueba tamiz seleccionada fue Rosa de Bengala, dada su alta sensibilidad, rapidez y disponibilidad. De las 100 muestras analizadas, dos resultaron seropositivas (2%), siendo igual en los dos sexos, sin importar la edad ni la ocupación. Los factores de riesgo más relevantes que están relacionadas con la presencia de anticuerpos anti- Brucella sp., son: el consumo de leche sin pasteurizar y trabajar con ganado vacuno.

Pardo (2010), en Colombia, realizó una publicación denominada “Seroprevalencia de anticuerpos anti-Brucella sp. en donantes de bancos de sangre en Latinoamerica: revisión de literatura” cuyo objetivo era conocer el estado actual, reportado por literatura de la
seroprevalencia de anticuerpos anti-\textit{Brucella}, en donantes de bancos de sangre en Latinoamérica, así mismo realizar un estudio descriptivo, de revisión de literatura. Llegó a la conclusión de que la prevalencia más alta, fue la hallada en México (3.6%), seguida por Argentina (1.4%) y Perú (2.58%).

Serrano (2009), en México publicó “Detección de anticuerpos circulantes en donantes de sangre en México”, cuyo objetivo fue detectar anticuerpos circulantes contra seis infecciones transmisibles por sangre en donantes de una institución de seguridad social en Querétaro, México. Dentro de estos marcadores serológicos estaba la detección de anticuerpos anti-\textit{Brucella sp.}; se registraron 6 929 donantes, entre los cuales se identificó a los diagnosticados con cualquier anticuerpo circulante contra Brucelosis, enfermedad de Chagas, hepatitis B, hepatitis C, sífilis y VIH. De los 6 929 donantes, 144 fueron detectados con algún tipo de anticuerpo circulante de las seis infecciones potencialmente transmisibles por sangre., Y concluyen que las prevalencias más bajas correspondieron a brucelosis y sífilis.

Ortega (2007), en el Perú publicó “Prevalencia de anticuerpos contra \textit{Brucella sp.} en donantes del banco de sangre de un hospital de Lima”, analizándose 1003 muestras de suero. La prueba tamiz fue Rosa de Bengala (RB); las muestras positivas fueron evaluadas por las pruebas de aglutinación en tubo (AT) y 2-Mercaptoetanol (2-ME). Dos donantes resultaron positivos a RB, confirmados por AT y 2-ME, se encontró una prevalencia de 0,20% (IC99%: 0,01-0,92). Se demostró la presencia de donantes portadores de anticuerpos contra \textit{Brucella} con posible brucelosis activa, evidenciándose la posibilidad de transmisión de esta infección.
Marder (2005), en Argentina, publicó “Seroprevalencia de brucelosis en hemodonantes del Banco de Sangre de Corrientes, Argentina”. Con el objetivo de determinar la prevalencia de brucelosis entre los donantes de sangre de Corrientes, Argentina, se realizó un estudio epidemiológico retrospectivo a partir de los registros del Banco de Sangre Central de esa ciudad, donde el diagnóstico de brucelosis se realiza mediante la prueba de aglutinación en placa de Huddleson. Se tomaron en cuenta 35.388 fichas de registros de donantes, correspondientes al período enero de 2002 a julio de 2005. Se obtuvo una tasa de prevalencia de 1,40%, la cual es superior a la hallada en 2002 para la ciudad de Buenos Aires. Se enfatiza la relevancia zonal de las infecciones por *Brucella abortus*, *B. melitensis*, *B. suis*, y *B. canis* como enfermedades ocupacionales, así como el importante papel de la transfusión sanguínea en la transmisión interhumana de la brucelosis. Se pone de relieve la necesidad de incorporar técnicas diagnósticas capaces de detectar *B. canis*.

En los 4 años considerados, los casos seropositivos con relación al número de donantes fueron 182/9.722, 110/9.909, 159/9.898 y 43/5.859 respectivamente, diferencias que al ser procesadas con la prueba de X2 resultaron altamente significativas (p < 0,00001). La declinación de la tasa de prevalencia se atribuye al aumento de las medidas de control veterinario en animales transmisores de la enfermedad.

Torres (2004), en México, presentó “Seroprevalencia de anticuerpos anti-*Brucella* en disponentes de sangre con fines terapéuticos en tres bancos de sangre del Instituto Mexicano del Seguro Social”, proponiéndose como prueba de laboratorio de escrutinio en los donadores de sangre. Se analizaron 500 sueros sanguíneos de disponentes efectivos seleccionados y cuya muestra fue representativa de acuerdo al análisis estadístico elaborado. Las pruebas de laboratorio incluyeron Rosa de Bengala, Aglutinación Estándar en Microplaca y 2 Mercaptoetanol. De los 500 sueros analizados, 18 mostraron seropositividad, con una tasa de
seroprevalencia de 3.6%, predominando el sexo masculino (83.4%), por grupo de actividad las secundarias (72.2%), por grado de estudios académicos los de secundaria fueron los de mayor positividad (55.6%).

Travattoni (2004), en Venezuela, publicó “Prevalencia de brucelosis en alumnos y docentes de ciencias veterinarias de esperanza en el año 2002”, donde estudió 346 alumnos y 22 docentes veterinarios de la Facultad de Ciencias Veterinarias de Esperanza, se los sometió a una encuesta epidemiológica y se les extrajo sangre para la detección de anticuerpos de *Brucella abortus y canis* en suero, mediante las pruebas de aglutinación del antígeno en placa bufferado (BPA), Wright (SAT), 2-mercaptoetanol (2-ME) y fijación del complemento (FC) para el diagnóstico de *B. abortus* y la pruebas de precipitación para el diagnóstico de *B. canis*. Como resultado seis alumnos reaccionaron en forma positiva a BPA y SAT y de ellos, uno a 2-ME y FC; mostrando una prevalencia de 1,6%. Ninguno de los sueros analizados reaccionaron a *B. canis*.

Fuentes (2001), en Perú, publicó “Seroprevalencia de *Brucella* en donantes de sangre”, cuyo objetivo fue conocer el impacto de la brucelosis en los Bancos de Sangre. Materiales y métodos: Se realizó la prueba de Rosa de Bengala a 194 donantes de sangre de Lima y Callao. Resultados: Cinco personas presentaron serología positiva a *Brucella* (2,58%) de los cuales uno corresponde al Callao (3,6%), tres a Barranca (2,9%), uno a Supe (3,0%) y ninguno a Paramonga. De los 100 donantes voluntarios, ninguno fue positivo a *Brucella*, en tanto que de los 94 donantes por reposición cinco (5,3%) fueron positivos. Discusión: Se evidencia que entre los donantes de sangre existen portadores de brucelosis que, eventualmente, podrían transmitir esta enfermedad a los que reciben esta sangre contaminada. En los donantes voluntarios, no se encuentra caso alguno. Esto amerita más estudios a fin de verificar lo anteriormente obtenido, así como investigar si se presentaron casos de Brucellosis post-transfusional.
Hernández (1999), en México, realizó una investigación sobre la “Seroprevalencia de brucelosis en disponentes de sangre del Hospital General de México. De una población de 9,590 disponentes, 228 fueron positivos, con una prevalencia de 2.8%; sólo uno presentó manifestaciones clínicas, el cual se perdió durante el seguimiento. La brucelosis resultó ser más frecuente en hombres en edad productiva; predominó en el Estado de México; en el Distrito Federal, la delegación más afectada es Iztapalapa. El medio contaminante en general es leche y sus derivados, a pesar de ser comercial. El caso clínicamente positivo, consumió leche bronca y derivados de cabra. Conclusión: Se requiere la confirmación adicional con 2 mercapto-etanol para definir brucelosis activa, llevar una conducta más conservadora en la eliminación de sangre de donadores serológicamente positivos a brucela y clínicamente sanos. Se debe considerar al Distrito Federal y al Estado de México como zonas endémicas de *Brucella* debido a la migración.

Villalobos (1993), en Venezuela, publicó su trabajo “Investigación de Anticuerpos contra *Brucella* utilizando tres pruebas serológicas en donantes de sangre”. Se estudiaron 100 muestras de suero, obtenidas de donantes de sangre del Instituto Hematológico de Occidente (Maracaibo) y 1 obtenida de un paciente con infección causada por *Brucella abortus*, confirmada por el aislamiento del germen causal.

En todas las muestras se investigó la presencia de aglutininas mediante las técnicas de aglutinación en láminas y tubos, utilizando antígeno de *Brucella* obtenido de los Laboratorios Lee y la prueba de fijación de superficie en papel, obtenido del Laboratorio de Desarrollo Dr.
M. Ruiz Castañeda, Hospital Infantil de México. Los resultados fueron que de las 100 muestras de suero analizadas, ninguna de las dos pruebas mostró aglutinación por encima de 1:40.

2.2. Bases teóricas

2.2.1. Brucella.: Antecedentes Históricos.
Vega (2008), menciona que:

El origen de la brucelosis humana se pierde en la historia, aunque el primer informe clínico se le atribuye a Marston en 1859. El agente etiológico fue descubierto a finales del siglo XIX por Sir David Bruce, quien fue enviado a investigar a la Isla de Malta (Mediterranean Fever Commission) la causa de un padecimiento febril que había producido la muerte de un número considerable de soldados. El germen se identificó en 1887 en el bazo de cuatro soldados fallecidos y fue denominado Micrococcus melite. En 1896 Bang, un veterinario danés descubrió el agente causal del aborto bovino, que en un futuro se denominó B. abortus y en 1905 Themistokles Zammit documentó el papel que tenían las cabras y el consumo de sus productos, como fuente de contagio para adquirir la enfermedad como fuente de contagio para adquirir la enfermedad (p. 159).

Continúa Vega (2008) que:

En 1914, Traum aisló un microorganismo en los fetos abortados de cerdos que denominó B. suis. En 1920, Alice Evans, comprobó la semejanza de los microorganismos aislados por Bruce, Bang y Traum y sugirió designar el agente causal con el nombre de Brucella, en honor a David Bruce (p. 159).

2.2.2. Brucella sp.

El INS (2003) lo denomina como: “el agente etiológico de la brucelosis” (p. 9).
Así mismo:

La enfermedad es producida por varias especies del género \textit{Brucella}, las que presentan estas características:

- Son cocobacilos Gram negativos, cuyas dimensiones son de 0,5 a 0,7 µm de ancho por 0,6 a 1,0 µm de longitud.
- No produce cápsula, esporas, ni flagelos.
- No toman coloración bipolar.
- No son organismos ácido-resistentes, sin embargo no sufren daño a la decoloración por ácidos débiles álcalis.
- Son generalmente aerobios e inmóviles. Algunas cepas necesitan CO$_2$ (5% -10%) para su desarrollo.
- Tienen metabolismo respiratorio, es decir, oxidativo.
- También son organismos intracelulares.
- Cuando se observa al microscopio pueden notárselos solos, en parejas, o formando cadenas cortas, o pequeños conglomerados.

Se puede observar en cultivos (en medios sólidos), y las colonias son notorias luego del segundo al cuarto día de crecimiento. Su tamaño oscila entre 0,5 y 1,0 mm. Las colonias en los medios sólidos son transparentes, presentan bordes enteros y su superficie lisa (INS, 2003, p. 9).

2.2.3. \textbf{Especies del género Brucella.}

Según INS (2003, p. 9) son las siguientes:

2.2.3.1. \textit{Brucella melitensis}.

Éstas crecen en presencia de fucsina básica y tionina, también produce trazas de H$_2$S en medio peptonado, tiene un antígeno M predominante, es patógeno para el ganado caprino
y ovino, así como también en otras especies animales y humanos. *Brucella melitensis* presenta 3 biovares.

2.2.3.2. *Brucella abortus.*

Esta especie, para su cultivo y desarrollo requiere de CO₂ (entre 5,0% - 10,0%), y crece en presencia de fucsina básica, pero a diferencia de *B. melitensis* es inhibido por la tionina. Posee por lo general un antígeno A predominante. Infecta preferentemente a vacunos, produce abortos infecciosos en vacas y también infecta a otros animales y al hombre. Presenta 7 biovares.

2.2.3.3. *Brucella suis.*

Esta especie crece en presencia de tionina. A su vez posee un antígeno A predominante. Esta especie infecta preferiblemente a los cerdos, es patógena para otras especies animales y para el hombre (excepto, el biovar 4 que afecta a renos). Presenta 4 biovares.

2.2.3.4. *Brucella ovis.*

Requiere aditamento de CO₂ y no produce H₂S. Esta especie es oxidasa negativa. No reduce nitratos a nitritos, su desarrollo es impedido por metil violeta, pero se desarrolla en presencia de fucsina básica y tionina. Tampoco presenta antígenos A y M de las Brucellas lisas. Muestra un antígeno de superficie rugosa (R), que puede presentar respuestas cruzadas con otras Brucellas rugosas. Infecta a los ovinos y ocasiona epididimitis en los carneros. No es considerada patógena para otras especies animales ni es patógena para otras especies animales, ni para el ser humano.

2.2.3.5. *Brucella canis.*

En esta especie el crecimiento es inhibido por CO₂ y por la fucsina, pero no por la tionina. Tampoco produce H₂S. No poseen ni antígenos A, ni antígeno M. Pero sí forman
sedimento mucoso en los medios líquidos. También presenta antígeno de superficie (R). Infecta fundamentalmente a canes de ambos sexos. También se ha aislado en seres humanos.

2.2.3.6. *Brucella neotomae*.

Son oxidasa negativa, también produce H₂S. No se desarrolla en fucsina básica, pero sí entionina. Ha sido aislada en ratas salvajes del desierto de Utah (USA), pero no es patógena para otras especies animales ni para el humano.

Las especies *B. melitensis*, *B. abortus*, *B. suis* y *B. canis* son conocidas por su capacidad de infectar al hombre; sin embargo, los agentes que con mayor frecuencia causan la brucelosis humana son *B. melitensis* (98%) y *B. abortus* (2%) (Castro, 2005, p. 131).

2.2.4. **Estructura antigénica.**

INS (2003) menciona que:

La envoltura celular de *Brucella* está conformada por: i) 01 membrana interna, ii) 01 membrana externa y iii) 01 espacio periplásmico intermedio que contiene enzimas y proteínas útil para el transporte y un gel de composición glicopeptídica (peptidoglicano), responsable de la forma y la integridad osmótica de la bacteria (p. 10).

Castro (2005) dice: “La membrana externa de *Brucella* es rica en fosfatidilcolina y su componente más estudiado es el LPS conocido como endotoxina” (p. 131).

Así mismo INS (2003) dice que:

La membrana externa presenta fosfolípidos repartidos asimétricamente, también proteínas y un lipopolisacárido (LPS), que es considerado como el principal antígeno. Éste último se desglosa en dos modelos de complejos:

a) El Complejo liso de lipopolisacárido (S-LPS), y
b) El Complejo rugoso de lipopolisacárido (R-LPS) (p. 10)

INS (2003), además menciona que:

Estos dos complejos (lisos o rugosos) se presentan conforme a la clasificación estudiada para las cepas lisas o rugosas del género *Brucella*. El principal componente de virulencia es el lipopolisacárido (LPS) que está ubicado en la pared celular de esta bacteria.

Las cepas lisas que contienen S-LPS son más nocivas y agresivas y son férreas a la destrucción intracelular a cargo de leucocitos polimorfonucleares. Además, las bacterias del género *Brucella* son capaces de sobrevivir y de replicarse en el interior de las células del sistema reticuloendotelial (SRE), como es el monocito y el macrófago. La ubicación en el SRE nos hace deducir sobre las manifestaciones clínicas de la infección como son las linfadenopatías, hepatoesplenomegalia y también las complicaciones óseas (p. 10).

INS (2003), argumenta que: “los LPS son antígenos que participan en las pruebas ordinarias: pruebas de aglutinación y fijación de complemento. Están sobre la superficie y algunos antígenos proteínicos intervienen en las pruebas diagnósticas y en la actividad protectora de las diferentes vacunas” (p. 10).

Los haptenos NH y poli-B, relacionados con los S-LPS, se utilizan en los test de inmunodifusión radial para poder diferenciar los animales infectados de los animales inmunizados.

INS (2003), también nos dice que:

Se pueden producir reacciones serológicas cruzadas entre las especies lisas de *Brucella* y *Escherichia coli* O: 116 y O: 117, *Francisella tularensis*, el grupo *Salmonella* N(0:30) de Kauffman White, *Stenetrophononas*, (*Pseudomonas*) *maltophilia*, *Vibrio cholerae* y *Yersinia enterocolítica* 0:9 (p. 10).
Se puede decir que las reacciones cruzadas se producen por la semejanza de antígenos lipopolisacáridos en la superficie de la bacteria, pues generalmente se caracterizan por mostrar títulos, pudiendo distinguirse de las pruebas complementarias.

2.2.5. Epidemiología.

Murray (2003), señala que:

Los reservorios animales generalmente son las cabras y la ovejas (*Brucella melitensis*), el ganado vacuno (*Brucella abortus*), los cerdos (*Brucella suis*) y los perros (*Brucella canis*).

Los individuos con mayor riesgo y peligro de padecer esta enfermedad son aquellos que consumen lácteos no pasteurizados, los que están trato directo con los animales infectados y los profesionales laboratoristas (p. 309).

2.2.6. Brucelosis.

Acha (2001), le asigna la siguiente sinonimia: “Melitococcia, fiebre ondulante, fiebre de Malta, fiebre del Mediterráneo (en el ser humano), aborto contagioso, aborto infeccioso, aborto epizoótico (en animales), enfermedad de Bang (en bovinos)” (p. 28).

Soares *et al.* (2015), también menciona que:

La brucelosis es un problema de salud. Hablamos de una enfermedad muy contagiosa provocada por una bacteria del género *Brucella*, distribuida mundialmente, y presenta evolución crónica, que además presenta un aspecto granulomatoso difuso, y que se caracteriza por la infección de células del sistema fagocítico mononuclear, causada por bacterias intracelulares facultativas (p.920).

MSNA (2012), dice que:

Es una de las zoonosis de mayor propagación en el planeta, tanto en humanos y animales domesticados. Infecta esencialmente a los animales domésticos (bovinos, caprinos, ovinos y porcinos) aunque también afecta a la fauna silvestre y a los mamíferos marinos. El ser humano es considerado un huésped accidental (p. 3).
Etcheves (2007), dice que: “La brucelosis humana puede estar causada por distintas especies del género *Brucella* (*B. melitensis*, *B. abortus* y *B. suis*). *B. melitensis* es la especie más patógena para el hombre” (p.34).

MSNA (2012), dice que la brucelosis: “Es una enfermedad bacteriana sistémica que puede ser aguda o evolucionar hacia la cronicidad” (p. 3).

2.2.6.1. Modo de transmisión.

OPS (2009), señala que: “El contacto directo con animales infectados, la ingesta de productos de granja no pasteurizados, carne mal cocida, inhalación de partículas y la exposición de heridas de piel abiertas, son las maneras más comunes para adquirir esta infección bacteriana” (p. 55).

Según Torres (2004), el ser humano puede coger la infección:

a) Por exposición laboral.

b) Vínculo con lugares e ingesta de alimento contaminado.

c) Transmisión de persona a persona: de mayor importancia es la infección por medio de transfusiones sanguíneas o de un trasplante de tejido y el que representa un riesgo mayor es el trasplante medular (médula ósea).

d) Riesgo laboral: el personal de laboratorio encargado de la producción de vacunas, antígenos y los analistas de especímenes clínicos encaminados a la detección del agente se encuentran en riesgo de obtener la enfermedad por medio de aerosoles (p.392).

Pardo (2010), afirma que la transmisión de persona a persona: “Es muy rara, sin embargo se han realizado estudios que demuestran que esta transmisión bacteriana es posible por transfusión sanguínea o transplantes, esto principalmente, en países o en las zonas donde esta zoonosis es una enfermedad de endémica” (p.15).
Vega (2008), menciona que: “Otras rutas de transmisión menos frecuentes son por medio de transfusiones sanguíneas y se ha propuesto que podría transmitirse también por contacto sexual y por leche materna” (p.159).

Pero Álvarez (2015), refiere lo siguiente:

Aunque no se ha demostrado la infección entre seres humanos y además no se conocen por completo todos los reservorios de Brucella, se ha mencionado ya de algunos casos reportados de transmisión de persona a persona, así como de la transmisión por leche materna y sexual. Pero, sin embargo, es más significativa su transmisión por transfusiones de sangre, donación de órganos o trasplante de tejidos. Las vías de trasmisión son: mucosas, heridas en la piel y la vía digestiva, puede inclusive ingresar por las vías respiratorias mediante los aerosoles (p. 133).

Según Koneman (2008): “Las infecciones por Brucella han sido transmitidas a través de transfusiones de sangre y trasplantes de médula ósea de donantes infectados” (p. 460).

OMS (2001a), refiere que infecciones raras que han sido reportadas como infecciones que excepcionalmente son “Otras transmitidas por transfusión incluyen el parvovirus humano B19, brucelosis, Epstein-Barr virus, toxoplasmosis, mononucleosis infecciosa y enfermedad de Lyme” (p.155).

2.2.6.2. **Cuadro clínico en el hombre.**

Según OPS (2009):

Los períodos de incubación son variables, usualmente entre 5 a 60 días, pero en muy raros casos los síntomas pueden tardar meses en hacerse visibles. La enfermedad está caracterizada por episodios recurrentes de fiebre, debilidad, perspiración (sudoración), cefaleas, dolores en el dorso, y dolores errantes y variables en articulaciones, y también en testículos. La bacteria
puede perdurar en forma viable en la circulación sanguínea de personas que estén asintomáticas por amplios períodos de tiempo y, por tal motivo, puede ser transferida en forma eficaz mediante una transfusión (p. 55).

INS (2003), dice que el cuadro clínico lo presenta como brucelosis aguda y crónica, a continuación se detalla.

2.2.6.2.1. Brucelosis aguda.

El tiempo de incubación varía entre una a tres semanas. Entre los síntomas se presentan síntomas como: cefalea, debilidad y mialgia muscular y dolor articular. Es característica significativa una sudoración copiosa, especialmente por las noches, acompañada de escalofríos. Es común notarse esplenomegalia y hasta suele palparse el hígado. Se nota un incremento de la temperatura corporal por las tardes (vespertina). Cuando la enfermedad se prolonga, la gráfica para la temperatura sigue un patrón de aspecto ondulante, por eso se le conoce como "fiebre ondulante" (INS, 2003, p.11).

2.2.6.2.2. Brucelosis crónica.

Esta enfermedad se le considera crónica cuando persiste o recurre por un periodo de 6 meses o más. Se le asignan síntomas de influenza reiterada, acompañados de sudoración, debilidad, cefalea, dolor muscular y/o articular (INS, 2003, p.11).

2.2.6.2.3. Complicaciones
Entre las más comunes tenemos: epididimoorquitis, tromboflebitis, espondilitis (inflamación de vertebras) y artritis periférica, especialmente en las rodillas, también caderas y en hombros (INS, 2003, p.11).
2.2.6.3. Respuesta inmune.

Castro (2005) opina que: “El ingreso de Brucella en el ser humano estimula la activación de los mecanismos inmunitarios que se empiezan con la participación de algunos elementos de la inmunidad innata, como lo son el complemento (C), leucocitos como los neutrófilos y los macrófagos” (p. 207).

Hernandez (1999), menciona que: “Afecta sobre todo a hombres entre 20 - 60 años, las brucelas pueden entrar al cuerpo a través de mucosas, abrasiones cutáneas o inhalación, siendo los polimorfonucleares la primera línea defensiva contra esas microorganismos, pero pueden sobrevivir dentro de éstos” (p. 109).

Continúa Etcheves (2007), que:
Los neutrófilos polinucleares son las primeras células del huésped que se ponen en contacto con Brucella. La opsonización de la bacteria mediada por los anticuerpos y complemento facilita su fagocitosis. Hay células que también van a reaccionar ante la presencia de Brucella, éstas serán los macrófagos. El ingreso de la bacteria a las células se realiza por medio de la acción recíproca entre las moléculas CD14 y el LPS de la bacteria. Esta interacción induce también la producción de IL-12 que estimula las células natural killer (NK) y los linfocitos T colaboradores o helper (LTH) CD4+, que secretan TNF-γ, ayudando el desarrollo de la respuesta inmune primordialmente mediada por LTH1. Este subconjunto de linfocitos T activa principalmente la respuesta de tipo celular y participa directamente combatiendo contra microorganismos intracelulares, puesto que un amplio modelo de citocinas incluye IL 2, IL 3, IL 6, IL 12, IFN-α y sobre todo TNF-γ, necesaria para la activación de los macrófagos (p. 34).

Etcheves (2007), menciona también que:
Los linfocitos también son impactados por diferentes antígenos de *Brucella*. Las proteínas de la *Brucella* son procesadas dentro de la célula presentadora de antígenos y sus péptidos relacionados a moléculas CMH de clase I y de clase II son expuestos a los LTH CD4+ y LT citotóxicos (LTC) CD8+. Estos últimos van a lisar a los macrófagos y otras células infectadas con *Brucella*. El LPS es considerado un antígeno T independiente, que puede activar a los linfocitos B (LB) sin la presencia de los LTH. Los primeros anticuerpos que se forman durante una infección son los anticuerpos IgM, seguidos de IgG e IgA, esto dependiendo de la especie animal (p. 34).

Dentro de la clase IgG, pueden formarse, anticuerpos bloqueantes o no aglutinantes, también llamados anticuerpos asimétricos, especialmente en infecciones crónicas, donde se llegan a alcanzar títulos elevados. Estos anticuerpos se van a diferenciar de los anticuerpos completos solo en ciertas propiedades tanto in vitro como in vivo como por ejemplo, incapacidad de activar el complemento (C) por cualquiera de las vías o dar adecuadas reacciones de aglutinación (Etcheves, 2007, p.34).

INS (2003), menciona que:
Los anticuerpos del isótopo IgM van a aparecer una a dos semanas posterior a la infección, posteriormente aparecerá el isótopo IgG. Éstos aumentarán considerablemente las siguientes semanas, facilitándose el proceso de la fagocitosis y concediendo resistencia a las reinfecciones. Sin embargo, la recuperación de la infección va a depender de un mecanismo mediado por las células. Posteriormente, los linfocitos T específicos activados producirán citocinas que activarán a los macrófagos y estimularan el gran poder bactericida intracelular que poseen. Se debe advertir que el paciente infectado va a mostrar gran sensibilidad cutánea de tipo retardado a varios antígenos de *Brucella* (p. 11).

En la detección de los anticuerpos (inmunoglobulinas IgG e IgM) debemos considerar lo siguiente:
-Las inmunoglobulinas M (IgM) se formarán y aparecerán entre los 5 y 7 días y alcanzarán su pico aproximadamente los 13 y 21 días.

-Las inmunoglobulinas G (IgG) se forman simultáneamente entre los 14 - 21 días y alcanzan su máxima concentración aproximadamente entre los 28 - 42 días.

-Tanto en el ser humano como en los animales la infección natural estimulará la aparición simultánea o ligera diferida de los anticuerpos IgM e IgG.

-Mientras los anticuerpos IgM comienzan a declinar y van desapareciendo, los anticuerpos IgG, estos se estabilizan y persisten por tiempo prolongado.

-En los casos crónicos de brucelosis en el ser humano y brucelosis animal la clase principal de inmunoglobina presente y muchas veces la única, son los anticuerpos Ig G.

-En los seres humanos y en animales la desaparición de la Ig G significa, principalmente, la eliminación de la infección.

2.2.7. Pruebas para el diagnóstico de la brucelosis.

INS (2003), refiere que:

El diagnóstico se va a basar en los siguientes aspectos:

- El diagnóstico clínico.

- El diagnóstico bacteriológico (método directo).

- El diagnóstico serológico (método indirecto)(p.14)

Según Etcheves (2007): “El diagnóstico de certeza se establece aislando al microorganismo a partir de cultivos de sangre, médula ósea u otros tejidos. Los métodos serológicos sólo aportan un diagnóstico presuntivo (p. 35).
Para Alton (1976) manifiesta que la infección por *Brucella*: “Se comprueba de manera incontrovertible aislando y posteriormente identificando al gérmen mediante métodos microbiológicos. Pero, como no siempre esto es posible (aislamiento el germen causal) en los pacientes infectados, las pruebas serológicas desempeñan una parte importante en el diagnóstico ordinario de la brucelosis (p. 68).

Según Trabattoni (2004), el diagnóstico serológico: “Es el método indirecto utilizado, pero puede llegarse a observarse resultados falsos ocasionados por infecciones por bacterias como *Salmonella, Yersinia, Francisella, Vibrio cholerae*, que presentan una reacción cruzada con el lipopolisacárido liso (LPS) de *Brucella*” (p.26).

2.2.7.1. Métodos de detección.

Para el diagnóstico de esta infección tenemos dos métodos:

2.2.7.1.1. Métodos Directos.

Se basan en evidenciar la presencia de la bacteria o de sus componentes en los tejidos de los animales o del hombre. El diagnóstico definitivo requiere el aislamiento de la bacteria, frecuentemente a partir de hemocultivos. Los cultivos deben mantenerse en incubación un tiempo no menor a 30 días debido a que las bacterias del género *Brucella* son de crecimiento lento. En los últimos años se han desarrollado sistemas de hemocultivos automáticos o semiautomáticos, que permiten detectar más del 95% de los cultivos positivos antes del séptimo día de incubación (Etcheves, 2007, p.35).

2.2.7.1.2. Métodos Indirectos.

Etcheves (2007), menciona que existen numerosas pruebas que están destinadas a: “Detectar no sólo el mayor número de individuos infectados, sino al mismo tiempo diferenciar entre infectados y aquellos que han tenido un contacto ocasional con los antígenos de *Brucella* sin sufrir la infección, así como detectar las reacciones cruzadas” (p. 35).
La mayoría de las pruebas de laboratorio utilizan como antígenos suspensiones de *Brucella* en fase S o R, según la cepa bacteriana. Las cepas recomendadas por los organismos internacionales en la elaboración de los mismos son *B. abortus* 1119-3 ó 99S. Estos antígenos permiten detectar anticuerpos anti *B. abortus, suis y melitensis*, mientras que para anticuerpos anti *B. canis y B. ovis* se necesitan antígenos específicos de especie (Etcheves, 2007, p.35).

En el Perú, (INS (2003, p. 19).), menciona que entre las pruebas de detección tenemos:

a.- **Prueba en placa:**

Es una prueba *in vitro*, rápida y a la vez sencilla. Mediante esta prueba se detecta anticuerpos de tipo IgM e IgG al igual que la prueba lenta del método en tubo.

Esta prueba proporciona el título de la reacción de aglutinación. A la vez permite que su aplicación sea en gran escala en las campañas para control y erradicación de esta enfermedad.

b.- **Prueba rosa de bengala (también denominada Card test):**

Es una prueba *in vitro*, rápida y sencilla. Esta prueba presenta la prueba conocida como "screening" o tamizaje.

La prueba rosa de bengala es de alta sensibilidad y especificidad debido a que tiene pH ácido. A su vez es un procedimiento cualitativo rápido que presenta aglutinación macroscópica que se efectúa con una sola dilución y que detecta principalmente anticuerpos de clase IgG.

Se conoce que el colorante rosa bengala no va a ejercer acción sobre la actividad serológica y también se puede reemplazar por otros colorantes de acridina. La función del colorante es facilitar la observación de la reacción (aglutinación).
c.- Prueba en tubo:

Ésta es una prueba *in vitro* realizada en tubos de ensayo. También es llamada “la prueba lenta en tubos”, pues necesita 48 horas para la lectura de las reacciones de las aglutinaciones. Es el método para corroborar los resultados de otras pruebas serológicas: detección de anticuerpos IgM e IgG.

d.- Prueba 2 – mercaptoetanol:

Es una prueba selectiva que va a detectar solamente la presencia de anticuerpos IgG. Los anticuerpos IgM se degradarán por la acción de ciertos componentes que tienen el radical tiol, tales como el 2-mercaptoetanol. Los anticuerpos IgG, no sufrirán ningún efecto que pueda alterar su actividad en las reacciones aglutinantes.

En el ser humano esta prueba se debería incorporar en el diagnóstico rutinario.

En los animales que están infectados, los anticuerpos IgG persistirán por más tiempo y alcanzarán títulos más elevados que los anticuerpos IgM.

El test del 2-mercaptoetanol es muy útil para poder detectar infectados en estado crónico en el hombre y/o animales.

e.- Prueba de anillo en leche:

También le llaman «ring test».

Utilizada para determinar diagnóstico presuntivo en áreas de control. Y va a detectar anticuerpos aglutinantes que están presentes en la leche: anticuerpos IgM y anticuerpos IgA.

En la leche de las cabras, esta unión antígeno con su anticuerpo no forman ningún anillo por el tamaño y peso de los glóbulos grasos.

2.2.7.2. Norma Técnica en el Perú.

Navarro (2005), menciona que:
También se han evidenciado de resultados falsos positivos en el diagnóstico por el uso de antígenos comerciales que no están normalizados favoreciendo de esta manera a un incremento ficticio en número de casos de brucelosis humana en nuestro país. Ante esta situación el MINSA (Ministerio de Salud del Perú), durante el año 2003 refrendó la Norma Técnica de Diagnóstico y Tratamiento de Brucelosis Humana NT Nº 002 MINSA - DGSP - V. 01 RM 978 - 2003 SA / DM, que es de empleo obligatorio en todos los establecimientos de salud, con el fin de asegurar un tratamiento y un diagnóstico sin costo en pacientes que padezcan de brucelosis, empleándose antígenos de calidad normalizados con estándares OMS como son los elaborados por el Instituto Nacional de Salud, así mismo de ser necesario una corroboración bacteriológica de ciertos casos (p.0).

Por lo tanto, INS (2003), dice, que:

Las pruebas denominadas complementarias, conocidas como la prueba 2-mercaptoetanol que, en simultáneo con la prueba (lenta) en tubo, brinda un diagnóstico acertado de una infección por *Brucella*, nos permite realizar el acompañamiento de la enfermedad del paciente.

Estas pruebas complementarias permitirán dar solución a varios problemas, tales como:

- Llegar al diagnóstico correctamente del mayor número de casos, preferencialmente los crónicos, que muchas veces se encuentran ocultos o se encuentra con diagnóstico indeterminado.
- Evitarse o disminuir las reacciones imprecisas.
- Mostrar la presencia de algún anticuerpo incompleto.
- Realizar una observación epidemiológica eficaz y que sea mayor cobertura (p. 15).
Por lo tanto, en nuestro país, menciona MINSA (2005), que el Ministerio de Salud (Perú) en su Norma Técnica para el Diagnóstico y Tratamiento de la Brucelosis Humana señala que:

Las pruebas de diagnóstico serológico a emplearse en los servicios de salud del País serán las establecidas por el INS por estar estandarizadas bajo las normas de la OMS. Siendo las principales:

2.2.7.2.1. **Prueba Tamiz**

Constituido por:

a) Prueba de Rosa de Bengala

b) Prueba de Aglutinación en Placa

Tiene como fin detectar rápidamente y simultáneamente los diferentes tipos de inmunoglobulinas que van permitir diferenciar la infección de alguna reacción cruzada.

La interpretación del resultado de estas pruebas para el diagnóstico es la siguiente:

<table>
<thead>
<tr>
<th>ROSA BENGALA (Reacción)</th>
<th>PLACA (Título)</th>
<th>INTERPRETACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>1/25 - 1/100</td>
<td>Negativo</td>
</tr>
<tr>
<td>-</td>
<td>1/200 ó ></td>
<td>Realizar pruebas complementarias</td>
</tr>
<tr>
<td>+</td>
<td>1/25 ó ></td>
<td>Positivo</td>
</tr>
</tbody>
</table>

Cuando la Prueba Tamiz es positiva se realizará la prueba complementaria.

2.2.7.2.2. **Prueba complementaria**.

Constituido por:

a) Prueba de Aglutinación en Tubo

b) Prueba del 2 Mercapto-etanol
La interpretación del resultado de estos tests para llegar al diagnóstico será como así:

<table>
<thead>
<tr>
<th>2-ME (Títulos)</th>
<th>TUBO (Títulos)</th>
<th>INTERPRETACION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negativo</td>
<td>1/25 ó ></td>
<td>Negativo</td>
</tr>
<tr>
<td>1/25 ó ></td>
<td>1/25 ó ></td>
<td>Positivo</td>
</tr>
</tbody>
</table>

2.2.8. Donación de sangre.

Es una acción voluntaria, no una acción voluntaria remunerada, cuyo destino es cubrir una necesidad terapéutica. Se rige por una serie de principios médicos y éticos, plasmados en disposiciones legales, con el único fin de garantizar un producto sanguíneo seguro (INMP, 2008, p.9).

La Ley 26454 (creación del PRONAHEBAS), en su artículo 9 menciona que: “La donación de sangre humana, es una acción voluntaria y gratuita, realizado con fines terapéuticos o de investigación científica”.

OMS (2001a), menciona que:

Una estructura de donaciones de sangre y plasma voluntario y no remunerado es más fiable ya que la incidencia y prevalencia de infecciones transmisibles por alguna transfusión en los donantes de sangre voluntarios y no remunerados es siempre menor que el hallado entre los donantes familiares o remunerados. Es de importancia la educación de los donantes y los procedimientos de selección para impulsar que los donantes no aptos puedan diferir su donación o autoexcluirse (p.13).

Según Radillo (2006): “La donación se ha visto mermada en los últimos años debido al conocimiento de agentes emergentes infecciosos potenciales (príones, babesia, tripanosoma). Los donadores pagados tienen mayor riesgo de transmitir enfermedades infecciosas emergentes, que los no pagados (donantes voluntarios)” (p. 201).
2.2.8.1. **Tipo de donantes.**

Para poder ser un donante de sangre en HONADOMANI San Bartolomé, los postulantes a donar sangre deben reunir requisitos como:

- Tener DNI vigente o pasaporte
- Estar en buen estado de salud.
- Edad: 18 a 55 años
- Peso: mayor a 55 kg.
- No estar con tratamiento médico actual.
- No estar gestando, ni dando de lactar.
- Hematocrito: mayor a 40 % (varones) y mayor a 38% (mujeres).

Existen diferentes tipos de donantes:

2.2.8.1.1. **Donante voluntario.**

Aquel que dona su sangre libremente sin recibir dinero ni otro tipo de pago que puede ser considerado un sustituto del dinero. Su motivación principal es la de ayudar a receptores desconocidos y no el obtener un beneficio personal (OMS, 2001a, p. 13).

La incidencia y prevalencia más baja de infecciones que se transfieren por transfusión generalmente se hallan entre los donantes voluntarios y no remunerados regulares más que en los donantes ocasionales (OMS, 2001a, p. 14).

2.2.8.1.2. **Donante por reposición o familiar.**

Un donante que da sangre cuando lo requiere un miembro de su familia o de su comunidad. Esto puede involucrar un sistema de donación de sangre remunerada oculta en la cual el donante es pagado por los familiares del paciente (OMS, 2001a, p. 14).
Los familiares que no pueden encontrar donantes aptos o disponibles dentro de su propia familia suelen buscar donantes de reposición que están dispuestos a donar sangre por un pago. Los donantes que son pagados por los familiares del paciente están menos dispuestos a revelar las razones que los hacen no aptos para la donación (OMS, 2001a, p. 14).

2.2.8.1.3. Donantes profesionales o remunerados.

Son aquellos que reciben dinero u otro tipo de retribuciones (que pueden ser intercambiados por dinero) por la sangre que donan. Usualmente están motivados por lo que van a recibir y no por su deseo de ayudar a los demás (OMS, 2001a, p. 15).

La prevalencia e incidencia de infecciones transmisibles por transfusión es mayor en los donantes comerciales o remunerados (OMS, 2001a, p. 15).

2.2.8.2. Hemocomponentes.

OMS (2001b), dice que se refiere a: “Un componente de la sangre, fraccionado de la sangre completa, tales como: concentrado de hematíes, plasma presco, concentrados de plaquetas” (p. 20).

Según PRONAHEBAS (2004) se pueden enumerar como:

- Concentrado eritrocitario.- Se prepara mediante la disociación de los eritrocitos del componente plasmático de la sangre empleando un método conocido que dé como producto final un hematocrito final menor o hematocrito final igual a 80%.

- Plasma fresco congelado.- Se prepara por medio de una técnica conocida que divida el plasma del componente celular de la sangre. Si utilizamos un baño de congelamiento líquido, bolsa contenedora de plástico se protegerá de una alteración química.

- Concentrado plaquetario.- Es obtenida de sangre completa y se preparara de una técnica conocida. Debe tener al menos \(5.5 \times 10^{10}\) de plaquetas, como mínimo en un
75% de todas las unidades procesadas en el tiempo límite de conservación o durante el momento de utilización (p. 25).

2.2.8.3. Seguridad sanguínea.

OMS (2001b), hace hincapié que:

La calidad y seguridad sanguínea se garantiza por medio de todo el proceso comenzando de la selección de los donadores hasta el proceso de la transfusión al receptor.

Esto requiere:

- El ambiente de un servicio de transfusiones con coordinación nacional que acredite sistemas de calidad en todas sus áreas.
- La recolección de la sangre solamente de donadores voluntarios, mas no de no remunerados que procedan de poblaciones con bajo riesgo.
- El screening o tamizaje de toda la sangre colectada por las infecciones hemotransmisibles: VIH, sífilis, los virus de la hepatitis, y demás agentes infecciosos (la malaria y/o tripanosomiasis - “enfermedad de Chagas”).
- Buenas praxis del laboratorio en todos sus aspectos de la clasificación sanguínea, prueba de compatibilidad, preparación de hemocomponentes, almacenamiento y su traslado.
- Disminución de las transfusiones irrelevantes por medio del uso clínico apropiado de los hemocomponentes y el uso de alternativas sencillas para la transfusión, cuando estas sean verosímil (p.6).

PRONAHEBAS (2004) en la NT N°11, menciona que en nuestro país:

Se analizará la muestra sanguínea de cada donación alogénica para conocer presencia de HBsAg, anti-HBc, anti- HCV, anti - HIV 1 - 2, anti – HTLV I -II, Chagas y Sífilis. La sangre
completa y sus componentes no se distribuye o se despacha para transfusión si los resultados de estos análisis no dan resultado negativo (p. 27).

2.2.8.4 Transfusión sanguínea.

Según, INMP (2008) menciona que: “Las transfusiones sanguíneas son procedimientos terapéuticos que tiene como propósito subsanar la carencia de un hemocomponente específico, en lo que respecta a la facultad de transportar oxígeno (paquete globular) o con relación a la función hemostática (plaquetas, factores de coagulación)” (p.9).

La Ley 26454 (creación del PRONAHEBAS), en su artículo 6 refiere que: El Banco de Sangre son centros destinados para extraer (colecta) sangre humana, para poder transfundir, realizar terapias preventivas y realizar estudios; operan con licencia sanitaria y tienen la responsabilidad de asegurar la calidad y sus componentes durante la obtención, procesamiento y almacenamiento.

2.2.8.5. Riesgos de las transfusiones.

OMS (2001b), señala que: “La transfusión de sangre podría ser una intervención atenuante. Pero, como todo tratamiento, podría darnos una complicación aguda o tardía y conllevaría el riesgo de transmitir infecciones por transfusiones, incluyendo VIH, hepatitis virales, sífilis, malaria y la tripanosomiasis (enfermedad de Chagas)” (p. 4).

Serrano (2009), menciona que: “En los bancos de sangre de México, la vigilancia continua de títulos de anticuerpos de VIH, VHC, VHB, brucelosis, tripanosomiasis (o enfermedad de Chagas) y/o de sífilis en donadores es un método o técnica de norma dirigida a asegurar la calidad del hemocomponente” (p.357).
2.3. Definición de términos básicos

a) **Anticuerpos.** - Es una proteína elaborada por el sistema inmunitario del cuerpo cuando encuentra sustancias extrañas, llamadas antígenos. Los ejemplos de antígenos abarcan microorganismos (tales como bacterias, hongos, parásitos y virus) y químicos.

b) **Brucella sp.** - Son bacterias intracelulares Gram negativas. Son microorganismos etiológicos de una enfermedad zoonótica llamada brucelosis.

c) **Donante.** - Una persona de la cual se utiliza su sangre o tejido que son recolectados para su posible uso en transfusión o transplante (PRONAHEBAS, 2004, p. 44).

d) **Seroprevalencia.** - Expresión general de una enfermedad o una enfermedad dentro de una población definida en un momento determinado, medida pruebas de sangre (pruebas serológicas).

e) **Tamizaje o Screening.** - Es el uso de una prueba sencilla en una población saludable, para identificar a aquellos individuos que tienen alguna patología, pero que todavía no presentan síntomas.
Capítulo III

Hipótesis y Variables

3.1. Hipótesis

Dado que el Perú es considerado un país endémico de Brucelosis, existe la posibilidad de que los donantes de sangre sean portadores de *Brucella sp.* y podrían ser potenciales transmisores de este agente infeccioso a cualquier receptor de hemocomponentes.

3.2. Variables y su operacionalización

<table>
<thead>
<tr>
<th>Variable</th>
<th>Concepto</th>
<th>Indicador</th>
<th>Escala/categoría</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seroprevalencia de</td>
<td>Brucella sp.</td>
<td>Expresión general de una enfermedad o una enfermedad dentro de una población definida en un momento determinado, medida pruebas de sangre (pruebas serológicas).</td>
<td>Porcentaje</td>
</tr>
<tr>
<td>Tipo de donantes</td>
<td>a.- Donante voluntario</td>
<td>a.- Persona que desea compartir su salud donando sangre, para el paciente que la necesite. b.- Persona que por lo menos dona 2 veces al año.</td>
<td>a. Formato de selección de donante</td>
</tr>
<tr>
<td></td>
<td>b.- Donante voluntario habitual</td>
<td></td>
<td>b. Formato de selección de donante</td>
</tr>
<tr>
<td></td>
<td>c.- Donante por reposición</td>
<td>c.- Aquel que realiza una devolución acudiendo a que realicen una colecta de</td>
<td>c. Formato de selección de donante</td>
</tr>
<tr>
<td></td>
<td>d.- Donante remunerado</td>
<td></td>
<td>d. Formato de selección de donante</td>
</tr>
</tbody>
</table>
sangre total al banco de sangre (obligación).

d.- Personas que reciben dinero u otro tipo de retribuciones por su donación de sangre. Normalmente son diferidos.

<table>
<thead>
<tr>
<th>Edad</th>
<th>Sexo / Género</th>
<th>Procedencia</th>
<th>Ocupación /Oficio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiempo de vida transcurrido desde el nacimiento</td>
<td>Características fisiológicas que diferencian al hombre de la mujer.</td>
<td>Lugar de que procede alguien o algo.</td>
<td>Actividad laboral usual, estas requieren de habilidad manual o esfuerzo físico.</td>
</tr>
<tr>
<td>DNI/ Cuestionario/ Formato de selección de donante</td>
<td>DNI</td>
<td>DNI</td>
<td>DNI</td>
</tr>
</tbody>
</table>
| 18 – 55 años | - Masculino
- Femenino | - Departamento
- Provincia
- Distrito | - Subempleo
- Empleado
- Trabajo eventual
- T. Independiente
- Dependiente. |
Capítulo IV

Metodología

4.1. Tipo y diseño de estudio
Tipo: El estudio realizado fue de tipo descriptivo, corte transversal.

Descriptivo, porque. Detalla tendencias de un grupo o población (Hernández, 2010, p.80)

Diseño: No experimental.

No experimental, pues, esta se realiza sin manipular deliberadamente las variables independientes; se basa en categorías, conceptos, variables, sucesos, comunidades o contextos que ya ocurrieron o se dieron sin la intervención directa del investigador (Hernández, 2010, p.165).

4.2. Población y muestra

4.2.1. Población.

La población estuvo conformada por todos sueros conservados por congelación de los donantes de sangre ingresados al Servicio de Banco de Sangre y Hemoterapia Tipo II del Hospital Nacional Docente Madre Niño “San Bartolomé” del año 2016, el cual fue un total de 2130 crio viales (sueros congelados a -70°C).

4.2.2. Muestra.

Fueron 698 muestras (sueros congelados de donantes de sangre: criopreservados).
4.3. *Criterios de exclusión*
Se excluyó todos los sueros lipémicos y/o hemolizados, pues para la prueba screening (Rosa de bengala) no se debe utilizar sueros con esas características, pues pueden causar reacción cruzada.

4.4. *Instrumento de recolección de datos*
Para la recolección de datos utilizaron los siguientes instrumentos:

a. Registro de Donantes del Banco de sangre.

b. Fichas de entrevista para Postulantes de donación de sangre.

c. Programa de Base de datos para Banco de sangre: *e-Delphyn*.

4.5. *Procedimientos, materiales y equipos*
Antes del inicio del presente estudio se solicitó permiso formal a la institución: Hospital Nacional Docente Madre Niño “San Bartolomé”.

Se recolectó datos desde las Fichas de Entrevista para Postulantes de donación de sangre y del Sistema de base de datos software *e-Delphyn*.

Se prosiguió esta investigación, ya que se realizó el screening de brucelosis utilizando el reactivo de rosa de bengala, en nuestra área de trabajo, previa descongelación de los sueros de los donantes conservados a -70° C, escogidos al azar.

4.5.1. *Reactivos.*
Para el screening serológico para el hallazgo de brucelosis, se realizó la Prueba de Rosa de Bengala (se utilizó el antígeno constituido por suspensión celular inerte de *B. abortus* (muestra 1119-3), concentrada en 8%, con pH de 3,65, con colorante de rosa de bengala).
Para lo cual se utilizó:

- Antígeno rosa de bengala
- Control positivo de *Brucella*
- Control negativo de *Brucella*
- Placa de vidrio.
- Pipetas automáticas.
- Reloj con cronómetro.

4.5.2. Equipos.

- Agitador orbital de laboratorio (rotador)

4.5.3. Procedimiento.

- Llevamos a temperatura ambiente el reactivo, controles y muestras de suero.
- Utilizando la pipeta automática se adicionó 30 μL de la muestra del paciente en un círculo sobre la placa de vidrio.
- En otros círculos, se debe agregar 30 uL, de control negativo y control positivo.
- Mezclamos suavemente el Antígeno Rosa de Bengala hasta que se encuentre totalmente homogéneo, después coloque 30 μL en la placa de prueba, en el mismo círculo donde se colocó la muestra del donante y controles, mezclamos con un aplicador (usaremos un aplicador diferente para cada muestra).
- Repetir este paso las muestras de donantes y controles.
- Colocar la placa en el agitador rotatorio (orbital) a 80 – 100 r.p.m. por 4 minutos.
- Utilizar una fuente de luz directa para la lectura del resultado de la placa.
Observación: Las muestras reactivas a la prueba de rosa de bengala, debieron ser corroboradas con las pruebas complementarias: Test de aglutinación en tubo lenta y la técnica del 2 mercaptoetanol. Éstas fueron enviadas al Instituto Nacional de Salud, ente rector de investigación en el Perú, pero por razones de desabastecimiento, no se contaba con los reactivos para dichas pruebas complementarias. Debido a esta escasez se realizó la Test de Elisa Ig G e Ig M., como una alternativa, realizadas en también en INS. También se volvió a realizar el test de rosa de bengala a las mismas muestras reactivas en INS.

4.6. **Análisis de datos**

Para nuestro estudio de estadística descriptiva, se realizaron procesos básicos de: codificación, tabulación y construcción de tablas y gráficos.

El análisis de datos se realizó apoyándonos con los paquetes estadísticos vigentes.

La técnica utilizada para la verificación estadística fue mediante el analizador estadístico *SPSS®* (versión 24.0; SPSS Inc., Chicago, Illinois, EEUU).

4.7. **Aspectos éticos**

El estudio contó con el consentimiento y autorización de las autoridades correspondientes del hospital y se tuvo el debido cuidado de guardar el nombre de los participantes (donantes).
Capítulo V

Resultados

En el Banco de Sangre del Hospital Nacional Docente Madre-Niño “San Bartolomé”, durante el año 2016, realizaron su donación un total de 2130 personas, de los cuales y de acuerdo a nuestro cálculo muestral se tomó 698 sueros crioconservados (32.7% de la población), procesándose y detectándose 16 sueros positivos a la prueba Rosa de Bengala.

Todos los sueros con resultado positivos, fueron enviados al Instituto Nacional de Salud (INS) para ser confirmados con la batería completa para brucelosis. Pero, en dicha institución solo se realizó la prueba de Rosa de Bengala y las pruebas de ELISA IgG e IgM (Ensayo inmunoenzimatico), como alternativas y por falta de insumos, para detectar anticuerpos anti Brucella sp., de los cuales un (01) suero fue un falso positivo al screening serológico (Rosa de bengala), es decir solo 15 sueros fueron reactivos a Rosa de Bengala. Ninguno fue reactivo en las pruebas de ELISA IgG e IgM. Cabe precisar que desde mediados del año 2017 el INS, no contaba con stock de reactivos, ni insumos para descarte de brucelosis humana.

Finalmente se intentó realizar las Pruebas de aglutinación en tubo y 2 mercaptoetanol, sin dejar de considerar la dificultad por su escasez en muchos centros hospitalarios, ya que visité los principales hospitales de la ciudad de Lima, y ninguno lo realiza. A su vez tiene un elevado precio en laboratorios clínicos de prestigio del sector privado.

Por lo tanto, en el presente estudio se procesó un total de 698 sueros (según nuestro cálculo muestral estudiado) solo 15 sueros fueron positivos a la prueba de Rosa de Bengala, y 683 sueros resultaron negativo, como se muestra en la tabla N°1.
Tabla 01. Cantidad de donantes del total de la muestra estudiada

<table>
<thead>
<tr>
<th>Resultado</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rosa de bengala Negativo</td>
<td>683</td>
</tr>
<tr>
<td>Rosa de bengala Positivo</td>
<td>15</td>
</tr>
</tbody>
</table>

Tasa de prevalencia: Para este cálculo cual utilizaremos la siguiente fórmula matemática:

\[
Tasa\ de\ prevalencia (TP) = \frac{\text{Nro de eventos o casos}}{\text{Nro de individuos estudiados}} \times 100
\]

Reemplazando:

\[
TSP = \frac{15}{698} \times 100 = 2.15\%
\]

Por lo tanto la prevalencia hallada del presente estudio fue del 2.15%.

En la Figura 1, se detallan los porcentajes de individuos con resultados positivos y resultados negativo detectados durante el estudio (test de rosa de bengala). Tener en cuenta que una reacción positiva puede significar una infección de años atrás recuperada, o activa, o presencia de o reacción cruzada, como ocurrió con un suero en este estudio.
Figura 1. Seroprevalencia de anticuerpos anti *Brucella sp.*, en 698 donantes del Banco de Sangre de Hospital San Bartolomé durante el año 2016.

Tabla 2. Seroprevalencia de anticuerpos anti- *Brucella sp.* en donantes de banco de sangre según lugar de procedencia de los donantes del año 2016.

<table>
<thead>
<tr>
<th>PROCEDENCIA</th>
<th>RB NEGATIVO</th>
<th>RB POSITIVO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lima Norte</td>
<td>273</td>
<td>5</td>
</tr>
<tr>
<td>Lima Sur</td>
<td>61</td>
<td>2</td>
</tr>
<tr>
<td>Lima Este</td>
<td>128</td>
<td>3</td>
</tr>
<tr>
<td>Lima Centro</td>
<td>155</td>
<td>2</td>
</tr>
<tr>
<td>Callao</td>
<td>38</td>
<td>3</td>
</tr>
<tr>
<td>Provincias (Interior del país)</td>
<td>28</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>683</td>
<td>15</td>
</tr>
</tbody>
</table>

En la tabla 2, nótese que los donantes provenientes de Lima Norte, fueron 278 participantes, de los cuales 273 resultaron negativos a Rosa de bengala y 5 resultaron positivo (1.8 %).
Tabla 3. Seroprevalencia de anticuerpos anti-Brucella sp. en donantes de banco de sangre según ocupación u oficio.

<table>
<thead>
<tr>
<th>Ocupación u oficio</th>
<th>RB Negativo</th>
<th>RB Positivo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empleado</td>
<td>181</td>
<td>2</td>
</tr>
<tr>
<td>Obrero</td>
<td>172</td>
<td>5</td>
</tr>
<tr>
<td>Independiente</td>
<td>243</td>
<td>7</td>
</tr>
<tr>
<td>FFPP / FFAA</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>Estudiante</td>
<td>52</td>
<td>0</td>
</tr>
<tr>
<td>Profesional de la salud</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>Agropecuario</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>683</td>
<td>15</td>
</tr>
</tbody>
</table>

En la tabla 3, nótese que los donantes de ocupación u oficio independiente, fueron 250 participantes, de los cuales 7 resultaron positivos a Rosa de bengala (2.8%).

![Diagrama de barra: Seroprevalencia de anticuerpos antibrucella según lugar de procedencia](image)

Figura 2. Seroprevalencia de acuerdo al lugar de procedencia, predomina los donantes de Lima norte.
Figura 3. Seroprevalencia de acuerdo al género, predomina los donantes de género masculino.

 Nótese que en la Figura 3 se muestra que 542 varones, de ellos, 9 fueron positivos a Rosa de bengala (1.6%). De las 156 mujeres, 6 tuvieron resultado positivo a Rosa de bengala (3.8%).
Figura 4. Seroprevalencia de acuerdo al tipo de donante, donde se observa que predominan los donantes por reposición.

Nótese en la Figura 4, que 691 participantes fueron donantes por reposición, de los cuales 15 tuvieron resultado positivo a Rosa de bengala (2.1%) y 7 fueron donantes voluntarios y todos ellos con resultado negativo a Rosa de bengala.
Discusión

- La presente investigación nos ha ayudado a conocer y determinar la seroprevalencia de anticuerpos anti-Brucella sp. en donantes de sangre, que acudieron el año 2016, llegándose a conocer que existe alta probabilidad de que los donantes de sangre sean portadores y trasmisores de brucelosis.

- En los estudios de Fuentes (2001) la prevalencia obtenida fue de 2.58% y Ortega (2007) fue 0.2 %. Los resultados considerados en el presente estudio (prevalencia de 2.15 %) son similares a los resultados de Fuentes (2001), y superan al presentado por Ortega (2007), esto, debido al mayor universo de donantes que acuden a nuestro establecimiento.

- Los resultados de este estudio nos reveló que una parte de nuestros donantes ha estado expuesta a la infección por Brucella sp.

- La detección de los anticuerpos anti Brucella sp. en los donantes, hace que la transfusión sanguínea sea un procedimiento riesgoso, pues el receptor podría adquirir brucelosis.

- Una limitación del estudio fue la falta de pruebas complementarias, tanto en hospitales nacionales de la capital y en el Instituto Nacional de Salud (INS), por falta de provisión de reactivos desde hace más de 12 meses. Sin embargo en INS, se realizó nuevamente el test de roda de bengala y ELISA, para poder culminar el este estudio.

- Otra limitación al presente estudio, resultó que en los laboratorios clínicos de entidades privados la ejecución de las pruebas complementarias tienen un costo demasiado elevado.

- Los resultados de esta investigación tienen relación con estudios de otros autores que realizaron estudios en nuestro país, así mismo hay relación con la literatura internacional ya que se menciona que Perú es endémico a brucelosis.
- Ahora, si comparamos los resultados de este estudio, se observa que se debería realizar tests de screening para descarte de brucelosis como lo proponen Fuentes (2001) y Ortega (2007).
Conclusiones

En conclusión, puede decirse que:

1. Tras la realización del screening serológico a los 698 sueros del total de donantes, se determinó que la seroprevalencia de anticuerpos anti- *Brucella* sp. resultó 2.15 %, de donantes que concurrieron en el 2016.

2. De acuerdo al lugar de procedencia de los donantes de sangre en el año 2016, se determinó que la mayor cantidad de donantes provinieron de Lima-Norte (fueron 278 donantes), y de ellos 5 con resultado positivo al test de rosa de bengala (1.8%).

3. De acuerdo al oficio u ocupación de los donantes de sangre en el año 2016, se identificó que la mayor cantidad de donantes realizan oficios u ocupaciones laborales independientes, siendo un total de 250 donantes, y un número de 7 con resultado positivo al test de rosa de bengala (2.8%).

4. De acuerdo al género (sexo) de los donantes de sangre en el año 2016, se llegó a determinar que la mayor cantidad de donantes fueron del género masculino (542) y 9 resultaron con resultado positivo (1.6%), mientras que el de menor cantidad fue el género femenino (156 donantes) y 6 con resultado positivo (3.8%).

5. De acuerdo al tipo de donante de sangre en el año 2016, se determinó que la mayor cantidad de donantes fueron los de donación por reposición (691 donantes) y 15 donantes de estos tuvieron resultado positivo al test de rosa de bengala (2.1%). De los 7 donantes voluntarios (de los 698), todos tuvieron resultado negativo a rosa de bengala (1%).
Recomendaciones

Una vez concluida la tesis, se considera necesaria sugerir las siguientes recomendaciones:

1. Se debe tomar medidas de erradicación de ganado enfermo con brucelosis, ya que de éstos proviene esta zoonosis. Por lo tanto se debe empadronar a los ganaderos de todo el país. Así mismo sugerir evitar el consumo de todo producto lácteo que no haya sido pasteurizado.

2. Fortalecer la vigilancia veterinaria en animales transmisores de la Brucelosis, por parte de las entidades estatales, por lo tanto se debe mejorar la interacción entre el sector salud y el sector agricultura, para elaborar guías para una mejor selección de donantes.

3. Es imperativo que en los hospitales más importantes del Perú, también realicen pruebas confirmatorias o complementarias para brucelosis.

4. Incluir pruebas de screening a los donantes de sangre como lo realizan en países endémicos, como Argentina y México. Aunque estas pruebas no se mencionan en las normativas peruanas.

5. Incrementar las medidas de seguridad transfusional que incluyen la elección del donante mediante cuestionarios exhaustivos, intensificación del interrogatorio médico y reforzamiento de los formatos de revocatoria de donación.

Recuperado el 12 de diciembre de 2016 de https://repository.javeriana.edu.co/bitstream/handle/10554/8750/tesis688.pdf?

Recuperado el 10 de setiembre de 2016 de http://www.medigraphic.com/pdfs/actmed/am-2008/am084c.pdf

ANEXO

ANEXO N°1. Ficha con resultados emitidos por Instituto Nacional de Salud.

<table>
<thead>
<tr>
<th>OFICIO: BOL.1947</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESTABLECIMIENTO: CONSULTORIO PARTICULAR</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>código</th>
<th>prueba</th>
<th>resultado</th>
</tr>
</thead>
<tbody>
<tr>
<td>INS0415602</td>
<td>DX POR ROSA DE BENGALA BRUCELLOSIS</td>
<td>Fecha: 29/05/2018 Rosa de Bengala - Brucelosis: Positivo</td>
</tr>
<tr>
<td></td>
<td>ELISA IgG PARA BRUCELLA</td>
<td>Fecha: 30/05/2018 ELISA IgG PARA BRUCELLA: No reactiv</td>
</tr>
<tr>
<td></td>
<td>ELISA IgM PARA BRUCELLA</td>
<td>Fecha: 30/05/2018 ELISA IgM PARA BRUCELLA: NO REACTIVO</td>
</tr>
<tr>
<td>INS0415603</td>
<td>DX POR ROSA DE BENGALA BRUCELLOSIS</td>
<td>Fecha: 29/05/2018 Rosa de Bengala - Brucelosis: Negativo</td>
</tr>
<tr>
<td></td>
<td>ELISA IgG PARA BRUCELLA</td>
<td>Fecha: 30/05/2018 ELISA IgG PARA BRUCELLA: No reactiv</td>
</tr>
<tr>
<td></td>
<td>ELISA IgM PARA BRUCELLA</td>
<td>Fecha: 30/05/2018 ELISA IgM PARA BRUCELLA: NO REACTIVO</td>
</tr>
<tr>
<td>INS0415604</td>
<td>DX POR ROSA DE BENGALA BRUCELLOSIS</td>
<td>Fecha: 29/05/2018 Rosa de Bengala - Brucelosis: Positivo</td>
</tr>
<tr>
<td></td>
<td>ELISA IgG PARA BRUCELLA</td>
<td>Fecha: 30/05/2018 ELISA IgG PARA BRUCELLA: No reactiv</td>
</tr>
<tr>
<td></td>
<td>ELISA IgM PARA BRUCELLA</td>
<td>Fecha: 30/05/2018 ELISA IgM PARA BRUCELLA: NO REACTIVO</td>
</tr>
<tr>
<td>INS0415605</td>
<td>DX POR ROSA DE BENGALA BRUCELLOSIS</td>
<td>Fecha: 29/05/2018 Rosa de Bengala - Brucelosis: Positivo</td>
</tr>
<tr>
<td></td>
<td>ELISA IgG PARA BRUCELLA</td>
<td>Fecha: 30/05/2018 ELISA IgG PARA BRUCELLA: No reactiv</td>
</tr>
<tr>
<td></td>
<td>ELISA IgM PARA BRUCELLA</td>
<td>Fecha: 30/05/2018 ELISA IgM PARA BRUCELLA: NO REACTIVO</td>
</tr>
<tr>
<td>INS0415606</td>
<td>DX POR ROSA DE BENGALA BRUCELLOSIS</td>
<td>Fecha: 29/05/2018 Rosa de Bengala - Brucelosis: Positivo</td>
</tr>
<tr>
<td></td>
<td>ELISA IgG PARA BRUCELLA</td>
<td>Fecha: 30/05/2018 ELISA IgG PARA BRUCELLA: No reactiv</td>
</tr>
<tr>
<td></td>
<td>ELISA IgM PARA BRUCELLA</td>
<td>Fecha: 30/05/2018 ELISA IgM PARA BRUCELLA: NO REACTIVO</td>
</tr>
<tr>
<td>INS0415607</td>
<td>DX POR ROSA DE BENGALA BRUCELLOSIS</td>
<td>Fecha: 29/05/2018 Rosa de Bengala - Brucelosis: Positivo</td>
</tr>
<tr>
<td></td>
<td>ELISA IgG PARA BRUCELLA</td>
<td>Fecha: 30/05/2018 ELISA IgG PARA BRUCELLA: No reactiv</td>
</tr>
<tr>
<td></td>
<td>ELISA IgM PARA BRUCELLA</td>
<td>Fecha: 30/05/2018 ELISA IgM PARA BRUCELLA: NO REACTIVO</td>
</tr>
<tr>
<td>INS0415608</td>
<td>DX POR ROSA DE BENGALA BRUCELLOSIS</td>
<td>Fecha: 29/05/2018 Rosa de Bengala - Brucelosis: Positivo</td>
</tr>
<tr>
<td></td>
<td>ELISA IgG PARA BRUCELLA</td>
<td>Fecha: 30/05/2018 ELISA IgG PARA BRUCELLA: No reactiv</td>
</tr>
</tbody>
</table>

Página 1 de 3
<table>
<thead>
<tr>
<th>Inscripción</th>
<th>Prueba</th>
<th>Fecha de Prueba</th>
<th>Resultado</th>
<th>Fecha del Resultado</th>
<th>Resultado del Resultado</th>
</tr>
</thead>
<tbody>
<tr>
<td>INS041560C</td>
<td>DX Por Rosa de Bengala Bruceles</td>
<td>28/06/2018</td>
<td>Positivo</td>
<td>30/06/2018</td>
<td>No Reactivo</td>
</tr>
<tr>
<td>INS041561C</td>
<td>DX Por Rosa de Bengala Bruceles</td>
<td>04/05/2018</td>
<td>Positivo</td>
<td>30/06/2018</td>
<td>No Reactivo</td>
</tr>
<tr>
<td>INS0415611</td>
<td>DX Por Rosa de Bengala Bruceles</td>
<td>07/05/2018</td>
<td>Positivo</td>
<td>30/06/2018</td>
<td>No Reactivo</td>
</tr>
<tr>
<td>INS0415612</td>
<td>DX Por Rosa de Bengala Bruceles</td>
<td>13/05/2018</td>
<td>Positivo</td>
<td>30/06/2018</td>
<td>No Reactivo</td>
</tr>
<tr>
<td>INS0415613</td>
<td>DX Por Rosa de Bengala Bruceles</td>
<td>18/05/2018</td>
<td>Positivo</td>
<td>30/06/2018</td>
<td>No Reactivo</td>
</tr>
<tr>
<td>INS0415614</td>
<td>DX Por Rosa de Bengala Bruceles</td>
<td>24/05/2018</td>
<td>Positivo</td>
<td>30/06/2018</td>
<td>No Reactivo</td>
</tr>
<tr>
<td>INS0415615</td>
<td>DX Por Rosa de Bengala Bruceles</td>
<td>30/05/2018</td>
<td>Positivo</td>
<td>30/06/2018</td>
<td>No Reactivo</td>
</tr>
<tr>
<td>INS0415616</td>
<td>DX Por Rosa de Bengala Bruceles</td>
<td>05/06/2018</td>
<td>Positivo</td>
<td>30/06/2018</td>
<td>No Reactivo</td>
</tr>
<tr>
<td>INS0415617</td>
<td>DX Por Rosa de Bengala Bruceles</td>
<td>11/06/2018</td>
<td>Positivo</td>
<td>30/06/2018</td>
<td>No Reactivo</td>
</tr>
</tbody>
</table>
ELISA IgM PARA BRUCELLO: No reactivo
Fecha: 30/05/2018
ELISA IgM PARA BRUCELLO: NO REACTIVO